Solder die attach lifetime characterization of SOT-227 power MOSFET module in a three-phase inverter under power cycling

IF 1.5 4区 工程技术 Q3 MECHANICS
Hsien-Chie Cheng, Chih-Wei Hsu
{"title":"Solder die attach lifetime characterization of SOT-227 power MOSFET module in a three-phase inverter under power cycling","authors":"Hsien-Chie Cheng, Chih-Wei Hsu","doi":"10.1093/jom/ufad043","DOIUrl":null,"url":null,"abstract":"\n This study aims to assess the power cycling lifetime of the solder die attach of the silicon (Si) power metal-oxide-semiconductor field-effect transistor (MOSFET) modules in an SOT-227 package in a three-phase bridge inverter. This goal is achieved through a loose one-way coupling framework that incorporates a thermal computational fluid dynamics (CFD) model for temperature estimation and a transient thermal-mechanical finite element model (FEM) that accounts for the time-dependent viscoplastic behavior of the solder die attach through the Anand viscoplastic constitutive model for thermal-mechanical responses assessment. To facilitate an accurate prediction of the solder die attach lifetime during power cycling, a physical lifetime prediction model is constructed through the strain-based Coffin-Manson Eq. together with the experimental lifetime data and the corresponding calculated equivalent viscoplastic strain increments. Furthermore, parametric study via the coupling framework is conducted to examine the effect of cooling, operating and structural parameters on the solder die attach lifetime, and also to identify the most crucial design parameters. At last, experimental design using a Taguchi method is conducted to seek the optimal level combination of design parameters for enhanced power cycling lifetime of the solder die attach.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufad043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to assess the power cycling lifetime of the solder die attach of the silicon (Si) power metal-oxide-semiconductor field-effect transistor (MOSFET) modules in an SOT-227 package in a three-phase bridge inverter. This goal is achieved through a loose one-way coupling framework that incorporates a thermal computational fluid dynamics (CFD) model for temperature estimation and a transient thermal-mechanical finite element model (FEM) that accounts for the time-dependent viscoplastic behavior of the solder die attach through the Anand viscoplastic constitutive model for thermal-mechanical responses assessment. To facilitate an accurate prediction of the solder die attach lifetime during power cycling, a physical lifetime prediction model is constructed through the strain-based Coffin-Manson Eq. together with the experimental lifetime data and the corresponding calculated equivalent viscoplastic strain increments. Furthermore, parametric study via the coupling framework is conducted to examine the effect of cooling, operating and structural parameters on the solder die attach lifetime, and also to identify the most crucial design parameters. At last, experimental design using a Taguchi method is conducted to seek the optimal level combination of design parameters for enhanced power cycling lifetime of the solder die attach.
功率循环条件下三相逆变器中 SOT-227 功率 MOSFET 模块的焊盘附着寿命特性分析
本研究旨在评估三相桥式逆变器中采用 SOT-227 封装的硅(Si)功率金属氧化物半导体场效应晶体管(MOSFET)模块的焊模附件的功率循环寿命。这一目标是通过一个松散的单向耦合框架来实现的,该框架结合了一个用于温度估算的热计算流体动力学(CFD)模型和一个瞬态热机械有限元模型(FEM),后者通过用于热机械响应评估的 Anand 粘塑性结构模型,考虑了焊模附着物随时间变化的粘塑性行为。为便于准确预测功率循环期间的焊料芯片附着寿命,通过基于应变的 Coffin-Manson 公式,结合实验寿命数据和相应的等效粘塑性应变增量计算,构建了物理寿命预测模型。此外,还通过耦合框架进行了参数研究,以检验冷却、操作和结构参数对焊料芯片贴装寿命的影响,并确定最关键的设计参数。最后,采用田口方法进行实验设计,以寻求最佳的设计参数组合,从而提高功率循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信