Fadwa M. Al Chamaa, Ahmad H. El Ghor, Elie Hantouche
{"title":"Post-fire response of S235 steel plates considering different bolt hole-making processes","authors":"Fadwa M. Al Chamaa, Ahmad H. El Ghor, Elie Hantouche","doi":"10.1108/jsfe-04-2023-0023","DOIUrl":null,"url":null,"abstract":"PurposeThis study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.Design/methodology/approachA total of nine steel plates with a single bolt hole are tested. The single bolt holes are fabricated using three different hole-making processes: drilling, waterjet and plasma. Among the nine steel plates, three fabricated specimens are control specimens and are tested at ambient temperature. The six remaining steel plates with a single bolt hole are subjected to a complete heating-cooling cycle and then monotonically loaded until failure. The six fabricated specimens are first heated up to two different temperatures 800 and 925 °C, and then cooled back to the ambient prior to loading.FindingsThe results show that after being exposed to post-fire temperatures (800 and 925 °C), the maximum decrease in strength of the S235 steel plate was 6% (at 925 °C), 14% (at 925 °C) and 22% (at 800 °C) when compared to the results of ambient specimens for waterjet, drilled and plasma bolt holes, respectively. For post-fire temperature tests, drilled and waterjet bolt hole-making processes result in having approximately the same load-displacement response, and both have larger strength and ductility than those obtained using plasma cutting.Originality/valueThis study provides preliminary data to guide the steel designers and fabricators in choosing the most suitable hole-making process for fire applications and to quantify the post-fire reduction in capacity of S235 plates.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":"2 25","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Fire Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jsfe-04-2023-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThis study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.Design/methodology/approachA total of nine steel plates with a single bolt hole are tested. The single bolt holes are fabricated using three different hole-making processes: drilling, waterjet and plasma. Among the nine steel plates, three fabricated specimens are control specimens and are tested at ambient temperature. The six remaining steel plates with a single bolt hole are subjected to a complete heating-cooling cycle and then monotonically loaded until failure. The six fabricated specimens are first heated up to two different temperatures 800 and 925 °C, and then cooled back to the ambient prior to loading.FindingsThe results show that after being exposed to post-fire temperatures (800 and 925 °C), the maximum decrease in strength of the S235 steel plate was 6% (at 925 °C), 14% (at 925 °C) and 22% (at 800 °C) when compared to the results of ambient specimens for waterjet, drilled and plasma bolt holes, respectively. For post-fire temperature tests, drilled and waterjet bolt hole-making processes result in having approximately the same load-displacement response, and both have larger strength and ductility than those obtained using plasma cutting.Originality/valueThis study provides preliminary data to guide the steel designers and fabricators in choosing the most suitable hole-making process for fire applications and to quantify the post-fire reduction in capacity of S235 plates.