{"title":"Advanced robust control design and experimental verification for trajectory tracking of model-based uncertain collaborative robots","authors":"Shengchao Zhen, Runtong Li, Xiaoli Liu, Ye-hwa Chen","doi":"10.1088/1361-6501/ad179d","DOIUrl":null,"url":null,"abstract":"\n At the core of this research is the pursuit of enhancing the trajectory tracking performance of six-degree-of-freedom (6-DOF) collaborative robots, with a particular focus on addressing the challenges posed by uncertainties in real-world applications. One of the primary issues encountered with existing methods is the susceptibility of trajectory tracking to uncertainties, which can significantly hinder the performance of robotic systems. To address these challenges, we propose an advanced control method, known as the Model-based proportional-derivative controller, or MPDP controller for short, which represents an innovative fusion of model-based PD control principles with a robust control algorithm. This amalgamation is driven by the need to mitigate the impact of uncertainties and external disturbances on trajectory tracking. A comprehensive assessment grounded in Lyapunov theory has been undertaken to validate the effectiveness of our approach. The analysis has firmly established that our method ensures not only the ultimate boundedness but also the uniform boundedness of the robotic system, which is critical for its operational stability. Both experimental and simulation studies have been meticulously conducted to benchmark the performance of the MPDP controller against the conventional proportional-integral-derivative (PID) controller, which serves as a widely adopted baseline in the field. The results unequivocally demonstrate the superiority of the MPDP controller across multiple dimensions. It exhibits exceptional robustness, resulting in a smaller steady-state tracking error, a critical advantage when addressing inherent uncertainties and external disturbances that can perturb the robot system. This translates to a more stable trajectory tracking performance. Furthermore, the MPDP controller empowers the robot with the capability to precisely follow predefined trajectories, thus ensuring high-precision and reliable execution of tasks. This feature significantly contributes to an overall enhancement of system performance and productivity.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"26 20","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad179d","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At the core of this research is the pursuit of enhancing the trajectory tracking performance of six-degree-of-freedom (6-DOF) collaborative robots, with a particular focus on addressing the challenges posed by uncertainties in real-world applications. One of the primary issues encountered with existing methods is the susceptibility of trajectory tracking to uncertainties, which can significantly hinder the performance of robotic systems. To address these challenges, we propose an advanced control method, known as the Model-based proportional-derivative controller, or MPDP controller for short, which represents an innovative fusion of model-based PD control principles with a robust control algorithm. This amalgamation is driven by the need to mitigate the impact of uncertainties and external disturbances on trajectory tracking. A comprehensive assessment grounded in Lyapunov theory has been undertaken to validate the effectiveness of our approach. The analysis has firmly established that our method ensures not only the ultimate boundedness but also the uniform boundedness of the robotic system, which is critical for its operational stability. Both experimental and simulation studies have been meticulously conducted to benchmark the performance of the MPDP controller against the conventional proportional-integral-derivative (PID) controller, which serves as a widely adopted baseline in the field. The results unequivocally demonstrate the superiority of the MPDP controller across multiple dimensions. It exhibits exceptional robustness, resulting in a smaller steady-state tracking error, a critical advantage when addressing inherent uncertainties and external disturbances that can perturb the robot system. This translates to a more stable trajectory tracking performance. Furthermore, the MPDP controller empowers the robot with the capability to precisely follow predefined trajectories, thus ensuring high-precision and reliable execution of tasks. This feature significantly contributes to an overall enhancement of system performance and productivity.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.