{"title":"Yamabe solitons in contact geometry","authors":"Rahul Poddar, S. Balasubramanian, Ramesh Sharma","doi":"10.53733/286","DOIUrl":null,"url":null,"abstract":"It is shown that the scalar curvature of a Yamabe soliton as a Sasakian manifold is constant and the soliton vector field is Killing. The same conclusion is shown to hold for a Yamabe soliton as a $K$-contact manifold $M^{2n+1}$ if any one of the following conditions hold: (i) its scalar curvature is constant along the soliton vector field $V$, (ii) $V$ is an eigenvector of the Ricci operator with eigenvalue $2n$, (iii) $V$ is gradient.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"28 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
It is shown that the scalar curvature of a Yamabe soliton as a Sasakian manifold is constant and the soliton vector field is Killing. The same conclusion is shown to hold for a Yamabe soliton as a $K$-contact manifold $M^{2n+1}$ if any one of the following conditions hold: (i) its scalar curvature is constant along the soliton vector field $V$, (ii) $V$ is an eigenvector of the Ricci operator with eigenvalue $2n$, (iii) $V$ is gradient.