{"title":"Predictive Maintenance in IoT Devices using Time Series Analysis and Deep Learning","authors":"Et al. Mohan Raparthy","doi":"10.52783/dxjb.v35.113","DOIUrl":null,"url":null,"abstract":"The pervasive integration of Internet of Things (IoT) devices across industries has ushered in a new era of data-driven operational efficiency. However, the reliability and uninterrupted functionality of these interconnected devices necessitate innovative approaches to maintenance. This research focuses on the development and implementation of a predictive maintenance framework for IoT devices, leveraging the synergies between Time Series Analysis (TSA) and Deep Learning (DL) techniques. The primary objective of this study is to enhance the accuracy and efficiency of predictive maintenance processes, ultimately minimizing downtime and optimizing resource utilization. The research methodology involves the collection of diverse data types from IoT devices, encompassing sensor readings, error logs, and historical maintenance records. A meticulous data preprocessing stage follows, involving cleaning, normalization, and feature extraction to prepare the dataset for analysis. The core analytical components of the proposed framework include Time Series Analysis for uncovering temporal patterns in the IoT data. Statistical methods and time series decomposition are applied to identify trends and seasonality, providing valuable insights into the device's performance over time. Concurrently, Deep Learning models, specifically recurrent neural networks (RNNs) and long short-term memory networks (LSTMs), are employed to predict maintenance needs based on historical patterns. Results obtained from the application of the predictive maintenance framework to real-world IoT datasets demonstrate promising accuracy and efficiency in anticipating maintenance requirements. The paper identifies existing challenges in predictive maintenance for IoT devices and suggests future research directions. These include the exploration of edge computing, federated learning, and the integration of explainable AI to enhance model interpretability. In conclusion, the study underscores the significance of predictive maintenance in ensuring the reliability of IoT devices, offering a roadmap for industries seeking to harness the full potential of data analytics and artificial intelligence for operational excellence.","PeriodicalId":35288,"journal":{"name":"弹道学报","volume":"55 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"弹道学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.52783/dxjb.v35.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The pervasive integration of Internet of Things (IoT) devices across industries has ushered in a new era of data-driven operational efficiency. However, the reliability and uninterrupted functionality of these interconnected devices necessitate innovative approaches to maintenance. This research focuses on the development and implementation of a predictive maintenance framework for IoT devices, leveraging the synergies between Time Series Analysis (TSA) and Deep Learning (DL) techniques. The primary objective of this study is to enhance the accuracy and efficiency of predictive maintenance processes, ultimately minimizing downtime and optimizing resource utilization. The research methodology involves the collection of diverse data types from IoT devices, encompassing sensor readings, error logs, and historical maintenance records. A meticulous data preprocessing stage follows, involving cleaning, normalization, and feature extraction to prepare the dataset for analysis. The core analytical components of the proposed framework include Time Series Analysis for uncovering temporal patterns in the IoT data. Statistical methods and time series decomposition are applied to identify trends and seasonality, providing valuable insights into the device's performance over time. Concurrently, Deep Learning models, specifically recurrent neural networks (RNNs) and long short-term memory networks (LSTMs), are employed to predict maintenance needs based on historical patterns. Results obtained from the application of the predictive maintenance framework to real-world IoT datasets demonstrate promising accuracy and efficiency in anticipating maintenance requirements. The paper identifies existing challenges in predictive maintenance for IoT devices and suggests future research directions. These include the exploration of edge computing, federated learning, and the integration of explainable AI to enhance model interpretability. In conclusion, the study underscores the significance of predictive maintenance in ensuring the reliability of IoT devices, offering a roadmap for industries seeking to harness the full potential of data analytics and artificial intelligence for operational excellence.
期刊介绍:
Journal of Ballistics is an academic journal published by China Association for Science and Technology (CAST) and sponsored by China Society of Military Science and Industry (CSMI) at home and abroad. Founded in 1989, it is the only academic journal in the field of ballistics in China. The purpose of the journal is to exchange the latest achievements and related applications in the field of ballistics, introduce the new technology of ballistic testing, broaden the channels of information exchange, exchange academic ideas, promote the development of ballistics and military-industrial technology, and work hard to achieve the modernisation of national defence.
Journal of Ballistics is a Scopus-listed journal, Chinese core journal, Chinese science and technology core journal and CSCD core journal. The Honorary Editor-in-Chief is Academician Li Hongzhi, an academician of the Chinese Academy of Engineering, and the Editor-in-Chief, Professor Wang Zhongyuan, is a Distinguished Professor of the Yangtze River Scholars Award Scheme.
Journal of Ballistics mainly publishes the latest research results in the fields of ballistics, including internal ballistics, intermediate ballistics, external ballistics, underwater ballistics, terminal ballistics, trauma ballistics, experimental ballistics, launch dynamics, aerodynamics, flight mechanics, navigation and guidance, ballistic design and control, ballistic system synthesis and analysis, ballistic test technology, ballistic and archery in general and the laws of motion of flying objects. Academic papers on the latest research results on the laws of motion of flying objects.