{"title":"Potential pollution risks of historic landfills in England: Further analysis of climate change impacts","authors":"James H. Brand, Kate L. Spencer","doi":"10.1002/wat2.1706","DOIUrl":null,"url":null,"abstract":"Five years ago, an article in WIREs Water provided the first comprehensive analysis of historic (legacy) landfill sites vulnerable to coastal flooding and erosion at a national scale (England). This update expands upon that article by considering the potential impacts of climate change upon inland historic landfills. Globally, there are hundreds of thousands of landfills that predate modern environmental regulations, and where waste is not isolated from the surrounding environment, but climate change impacts on the pollution risk from historic landfills in freshwater environments has received little attention. Where climate change causes an increase in the frequency and magnitude of fluvial flood events, this will increase leachate generation and the probability of landfill erosion and solid waste release. Where there is increased drought the landfill capping materials may crack, opening up new pollutant pathways, and increasing the risk of solid waste release. Changes to groundwater movement resulting from climate change may open new leachate pathways, and in England alone, thousands of historic landfills are in (groundwater) Source Protection Zones where modern regulations to protect drinking water supplies would not permit their construction. This increased contaminant release from historic landfills in freshwater environments may impact surface and/or groundwater quality and ecological health, increase costs for drinking water monitoring/treatment, or make some abstraction sources unviable. This is especially of concern where receptors are subject to multiple pressures and may cause tipping points to be reached. Further research is warranted into contaminant behavior, receptor vulnerability, historic landfill risk prioritization, and mitigation/remediation methods.This article is categorized under:\nEngineering Water > Engineering Water\nScience of Water > Water Quality\nScience of Water > Water and Environmental Change\nWater and Life > Stresses and Pressures on Ecosystems\n","PeriodicalId":501223,"journal":{"name":"WIREs Water","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wat2.1706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Five years ago, an article in WIREs Water provided the first comprehensive analysis of historic (legacy) landfill sites vulnerable to coastal flooding and erosion at a national scale (England). This update expands upon that article by considering the potential impacts of climate change upon inland historic landfills. Globally, there are hundreds of thousands of landfills that predate modern environmental regulations, and where waste is not isolated from the surrounding environment, but climate change impacts on the pollution risk from historic landfills in freshwater environments has received little attention. Where climate change causes an increase in the frequency and magnitude of fluvial flood events, this will increase leachate generation and the probability of landfill erosion and solid waste release. Where there is increased drought the landfill capping materials may crack, opening up new pollutant pathways, and increasing the risk of solid waste release. Changes to groundwater movement resulting from climate change may open new leachate pathways, and in England alone, thousands of historic landfills are in (groundwater) Source Protection Zones where modern regulations to protect drinking water supplies would not permit their construction. This increased contaminant release from historic landfills in freshwater environments may impact surface and/or groundwater quality and ecological health, increase costs for drinking water monitoring/treatment, or make some abstraction sources unviable. This is especially of concern where receptors are subject to multiple pressures and may cause tipping points to be reached. Further research is warranted into contaminant behavior, receptor vulnerability, historic landfill risk prioritization, and mitigation/remediation methods.This article is categorized under:
Engineering Water > Engineering Water
Science of Water > Water Quality
Science of Water > Water and Environmental Change
Water and Life > Stresses and Pressures on Ecosystems