A comparative study of Glinka and Neuber approaches for fatigue strength assessment on 42CrMoS4‐QT specimens

IF 1.8 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Strain Pub Date : 2023-12-20 DOI:10.1111/str.12470
Philipp Thumann, Stefan Buchner, Steffen Marburg, Marcus Wagner
{"title":"A comparative study of Glinka and Neuber approaches for fatigue strength assessment on 42CrMoS4‐QT specimens","authors":"Philipp Thumann, Stefan Buchner, Steffen Marburg, Marcus Wagner","doi":"10.1111/str.12470","DOIUrl":null,"url":null,"abstract":"In fatigue strength assessment, the methods based on ideal elastic stresses according to Basquin and the less established method based on elastic‐plastic stress quantities according to Manson, Coffin and Morrow are applied. The former calculates loads using linear‐elastic stresses, the latter requires elastic‐plastic evaluation parameters, such as stresses and strains. These can be determined by finite element analysis (FEA) with a linear‐elastic constitutive law, and subsequent conversion to elastic‐plastic loads, using the macro support formula by Neuber. In this contribution, an alternative approach to approximate elastic‐plastic parameters proposed by Glinka is compared to the the strain‐life method using Neuber's formula, as well as the stress‐life method of Basquin. Several component tests on 42CrMoS4‐QT specimens are investigated. To determine the input data for the fatigue strength evaluations, the entire test setup is computed by FEA. The nodal displacements from these validated full‐model simulations are used as boundary conditions for a submodel simulation of a notch, whose results serve as input for the fatigue strength assessments. It is shown that all approaches provide a reliable assessment of components. Our key result is that the strain‐life method using the concept by Glinka for notch stress computation, yields improved results in fatigue strength assessments.","PeriodicalId":51176,"journal":{"name":"Strain","volume":"96 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12470","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In fatigue strength assessment, the methods based on ideal elastic stresses according to Basquin and the less established method based on elastic‐plastic stress quantities according to Manson, Coffin and Morrow are applied. The former calculates loads using linear‐elastic stresses, the latter requires elastic‐plastic evaluation parameters, such as stresses and strains. These can be determined by finite element analysis (FEA) with a linear‐elastic constitutive law, and subsequent conversion to elastic‐plastic loads, using the macro support formula by Neuber. In this contribution, an alternative approach to approximate elastic‐plastic parameters proposed by Glinka is compared to the the strain‐life method using Neuber's formula, as well as the stress‐life method of Basquin. Several component tests on 42CrMoS4‐QT specimens are investigated. To determine the input data for the fatigue strength evaluations, the entire test setup is computed by FEA. The nodal displacements from these validated full‐model simulations are used as boundary conditions for a submodel simulation of a notch, whose results serve as input for the fatigue strength assessments. It is shown that all approaches provide a reliable assessment of components. Our key result is that the strain‐life method using the concept by Glinka for notch stress computation, yields improved results in fatigue strength assessments.
对 42CrMoS4-QT 试样进行疲劳强度评估的格林卡和纽伯方法比较研究
在疲劳强度评估中,采用了巴斯金(Basquin)基于理想弹性应力的方法和曼森(Manson)、科芬(Coffin)和莫罗(Morrow)基于弹塑性应力量的较不成熟的方法。前者使用线性弹性应力计算载荷,后者则需要弹塑性评估参数,如应力和应变。这些参数可通过有限元分析(FEA)确定,并采用线性弹性结构定律,然后使用 Neuber 的宏观支撑公式转换为弹塑性载荷。在本文中,我们将 Glinka 提出的近似弹塑性参数的替代方法与使用 Neuber 公式的应变-寿命法以及 Basquin 的应力-寿命法进行了比较。对 42CrMoS4-QT 试样的几个组件测试进行了研究。为了确定疲劳强度评估的输入数据,整个试验装置都通过有限元分析进行了计算。这些经过验证的全模型模拟的节点位移被用作缺口子模型模拟的边界条件,其结果作为疲劳强度评估的输入。结果表明,所有方法都能对部件进行可靠的评估。我们的主要结果是,采用 Glinka 的概念进行缺口应力计算的应变-寿命法在疲劳强度评估中取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Strain
Strain 工程技术-材料科学:表征与测试
CiteScore
4.10
自引率
4.80%
发文量
27
期刊介绍: Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage. Strain welcomes papers that deal with novel work in the following areas: experimental techniques non-destructive evaluation techniques numerical analysis, simulation and validation residual stress measurement techniques design of composite structures and components impact behaviour of materials and structures signal and image processing transducer and sensor design structural health monitoring biomechanics extreme environment micro- and nano-scale testing method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信