Twitter Sentiment Analysis Classification to Assess Public Opinion on Football Matches Using the Naïve Bayes Method

Yuli Astuti, Hafiidh Khoiru Pradana, Dewi Anisa Istiqomah, S. Supriatin, Ninik Tri Hartati
{"title":"Twitter Sentiment Analysis Classification to Assess Public Opinion on Football Matches Using the Naïve Bayes Method","authors":"Yuli Astuti, Hafiidh Khoiru Pradana, Dewi Anisa Istiqomah, S. Supriatin, Ninik Tri Hartati","doi":"10.26798/jiss.v2i2.1136","DOIUrl":null,"url":null,"abstract":" The Kanjuruhan tragedy has attracted many comments on various social media platforms. This research will compare the number of positive and negative comments on Twitter and social media and determine the accuracy of the classification method used. The data used in this study consisted of 2052 pieces, consisting of 1015 positive and 1037 negative pieces. To determine the effect of the amount of training data on the resulting accuracy, testing will be carried out three times with different combinations of training data and test data, namely 70:30, 80:20, and 90:10. The results of this study obtained the highest accuracy value of 79.6%. This program can be developed for other social media platforms such as Facebook, Instagram, and others","PeriodicalId":156799,"journal":{"name":"Journal of Intelligent Software Systems","volume":"106 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Software Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26798/jiss.v2i2.1136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

 The Kanjuruhan tragedy has attracted many comments on various social media platforms. This research will compare the number of positive and negative comments on Twitter and social media and determine the accuracy of the classification method used. The data used in this study consisted of 2052 pieces, consisting of 1015 positive and 1037 negative pieces. To determine the effect of the amount of training data on the resulting accuracy, testing will be carried out three times with different combinations of training data and test data, namely 70:30, 80:20, and 90:10. The results of this study obtained the highest accuracy value of 79.6%. This program can be developed for other social media platforms such as Facebook, Instagram, and others
使用奈伊夫贝叶斯方法对推特情感分析进行分类,以评估公众对足球比赛的看法
坎朱鲁汉悲剧在各种社交媒体平台上吸引了众多评论。本研究将比较推特和社交媒体上正面和负面评论的数量,并确定所用分类方法的准确性。本研究使用的数据包括 2052 条,其中正面 1015 条,负面 1037 条。为了确定训练数据量对结果准确性的影响,将使用不同的训练数据和测试数据组合(即 70:30、80:20 和 90:10)进行三次测试。这项研究的结果获得了 79.6% 的最高准确率。该程序可用于其他社交媒体平台,如 Facebook、Instagram 等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信