{"title":"Interpretation of low-frequency distributed acoustic sensing data based on geomechanical models","authors":"Ana Karen Ortega Perez, M. van der Baan","doi":"10.1190/geo2023-0348.1","DOIUrl":null,"url":null,"abstract":"Distributed Acoustic Sensing (DAS) is a technology that enables continuous, real-time measurements along the entire length of a fiber optic cable. The low-frequency band of DAS can be used to analyze hydraulic fracture geometry and growth. In this study, the low-frequency strain waterfall plots with their corresponding pumping curves were analyzed to obtain information on fracture azimuth, propagation speed, number of fractures created in each stage, and re-stimulation of pre-existing fractures. We also use a simple geomechanical model to predict fracture growth rates while accounting for changes in treatment parameters. As expected, the hydraulic fractures principally propagate perpendicular to the treated well, that is, parallel to the direction of maximum horizontal stress. During many stages, multiple frac hits are visible indicating that multiple parallel fractures are created and/or re-opened. Secondary fractures deviate towards the heel of the well, likely due to the cumulative stress shadow caused by previous and current stages. The presence of heart-shaped tips reveals that some stress and/or material barrier is overcome by the hydraulic fracture. The lobes of the heart are best explained by the shear stresses at 45-degree angles from the fracture tip instead of the tensile stresses directly ahead of the tip. Antennas ahead of the fracture hits indicate the re-opening of pre-existing fractures. Tails in the waterfall plots provide information on the continued opening, closing, and interaction of the hydraulic fractures within the fracture domain and stage domain corridors. Analysis of the low-frequency DAS plots thus provides in-depth insights into the rock deformation and rock-fluid interaction processes occurring close to the observation well.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"141 36","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0348.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed Acoustic Sensing (DAS) is a technology that enables continuous, real-time measurements along the entire length of a fiber optic cable. The low-frequency band of DAS can be used to analyze hydraulic fracture geometry and growth. In this study, the low-frequency strain waterfall plots with their corresponding pumping curves were analyzed to obtain information on fracture azimuth, propagation speed, number of fractures created in each stage, and re-stimulation of pre-existing fractures. We also use a simple geomechanical model to predict fracture growth rates while accounting for changes in treatment parameters. As expected, the hydraulic fractures principally propagate perpendicular to the treated well, that is, parallel to the direction of maximum horizontal stress. During many stages, multiple frac hits are visible indicating that multiple parallel fractures are created and/or re-opened. Secondary fractures deviate towards the heel of the well, likely due to the cumulative stress shadow caused by previous and current stages. The presence of heart-shaped tips reveals that some stress and/or material barrier is overcome by the hydraulic fracture. The lobes of the heart are best explained by the shear stresses at 45-degree angles from the fracture tip instead of the tensile stresses directly ahead of the tip. Antennas ahead of the fracture hits indicate the re-opening of pre-existing fractures. Tails in the waterfall plots provide information on the continued opening, closing, and interaction of the hydraulic fractures within the fracture domain and stage domain corridors. Analysis of the low-frequency DAS plots thus provides in-depth insights into the rock deformation and rock-fluid interaction processes occurring close to the observation well.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.