Yon-Suk Kim, Eun-Bin Lee, Ye-Ji Yu, Ga-Won Kim, Woo-Jung Kim, Dong-Kug Choi
{"title":"Ethyl Acetate Fraction from a Catalpa ovata G. Don Extract Inhibits ɑ-MSH-Induced Melanogenesis through the cAMP/CREB Pathway","authors":"Yon-Suk Kim, Eun-Bin Lee, Ye-Ji Yu, Ga-Won Kim, Woo-Jung Kim, Dong-Kug Choi","doi":"10.3390/ijms25010151","DOIUrl":null,"url":null,"abstract":"The whitening effect of reducing skin pigmentation is one of the most important goals of cosmetics. The purpose of this study was to determine whether Catalpa ovata extract and its fractions have potential as natural skin-lightening agents. Initially, we screened various fractions of Catalpa ovata extract using an in vitro antioxidant assay. Then, the inhibitory effects of C. ovata extract and its fraction on melanogenesis and the related mechanisms were investigated in B16F1 melanoma cells. The results showed that the ethyl acetate fraction (EF) from C. ovata extract markedly inhibited melanin synthesis in a dose-dependent manner at non-toxic concentrations. Furthermore, EF downregulated both the protein and mRNA levels of tyrosinase, which is a specific enzyme that catalyzes the conversion of tyrosine into melanin. We also found that EF decreased the microphthalmia-associated transcription factor (MITF) at the protein and mRNA levels. EF increased the phosphorylation of ERK and suppressed the phosphorylation of JNK and p38 in ɑ-MSH-induced B16F1 cells. These results indicate that EF can regulate the MAPK pathway. In addition, EF has an anti-melanogenic effect via the downregulation of intracellular cyclic-AMP (cAMP). Nineteen major compounds of EF were identified using LC-MS/MS. Taken together, these results suggest that EF may be a potential anti-melanogenic agent for use in skin-whitening cosmetics and in topical treatments for hyperpigmentation disorders.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":"142 4","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25010151","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The whitening effect of reducing skin pigmentation is one of the most important goals of cosmetics. The purpose of this study was to determine whether Catalpa ovata extract and its fractions have potential as natural skin-lightening agents. Initially, we screened various fractions of Catalpa ovata extract using an in vitro antioxidant assay. Then, the inhibitory effects of C. ovata extract and its fraction on melanogenesis and the related mechanisms were investigated in B16F1 melanoma cells. The results showed that the ethyl acetate fraction (EF) from C. ovata extract markedly inhibited melanin synthesis in a dose-dependent manner at non-toxic concentrations. Furthermore, EF downregulated both the protein and mRNA levels of tyrosinase, which is a specific enzyme that catalyzes the conversion of tyrosine into melanin. We also found that EF decreased the microphthalmia-associated transcription factor (MITF) at the protein and mRNA levels. EF increased the phosphorylation of ERK and suppressed the phosphorylation of JNK and p38 in ɑ-MSH-induced B16F1 cells. These results indicate that EF can regulate the MAPK pathway. In addition, EF has an anti-melanogenic effect via the downregulation of intracellular cyclic-AMP (cAMP). Nineteen major compounds of EF were identified using LC-MS/MS. Taken together, these results suggest that EF may be a potential anti-melanogenic agent for use in skin-whitening cosmetics and in topical treatments for hyperpigmentation disorders.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).