{"title":"An Intrusion Detection Model Based on Feature Selection and Improved One-Dimensional Convolutional Neural Network","authors":"Qingfeng Li, Bo Li, Linzhi Wen","doi":"10.1155/2023/1982173","DOIUrl":null,"url":null,"abstract":"The problem of intrusion detection has new solutions, thanks to the widespread use of machine learning in the field of network security, but it still has a few issues at this time. Traditional machine learning techniques to intrusion detection rely on expert experience to choose features, and deep learning approaches have a low detection efficiency. In this paper, an intrusion detection model based on feature selection and improved one-dimensional convolutional neural network was proposed. This model first used the extreme gradient boosting decision tree (XGboost) algorithm to sort the preprocessed data, and then it used comparison to weed out 55 features with a higher contribution. Then, the extracted features were fed into the improved one-dimensional convolutional neural network (I1DCNN), and this network training was used to complete the final classification task. The feature selection and improved one-dimensional convolutional neural network (FS-I1DCNN) intrusion detection model not only solved the traditional machine learning method of relying on expert experience to extract features but also improved the detection efficiency of the model, reduced the training time while reducing the dimension, and increased the overall accuracy. In comparison to the I1DCNN model without feature extraction and the conventional one-dimensional convolutional neural network (1DCNN) model, the experimental results demonstrate that the FS-I1DCNN model’s overall accuracy increases by 0.67% and 2.94%, respectively. Its accuracy, precision, recall, and F1-score were significantly better than those of the other intrusion detection models, including SVM and DBN.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":"43 25","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/1982173","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of intrusion detection has new solutions, thanks to the widespread use of machine learning in the field of network security, but it still has a few issues at this time. Traditional machine learning techniques to intrusion detection rely on expert experience to choose features, and deep learning approaches have a low detection efficiency. In this paper, an intrusion detection model based on feature selection and improved one-dimensional convolutional neural network was proposed. This model first used the extreme gradient boosting decision tree (XGboost) algorithm to sort the preprocessed data, and then it used comparison to weed out 55 features with a higher contribution. Then, the extracted features were fed into the improved one-dimensional convolutional neural network (I1DCNN), and this network training was used to complete the final classification task. The feature selection and improved one-dimensional convolutional neural network (FS-I1DCNN) intrusion detection model not only solved the traditional machine learning method of relying on expert experience to extract features but also improved the detection efficiency of the model, reduced the training time while reducing the dimension, and increased the overall accuracy. In comparison to the I1DCNN model without feature extraction and the conventional one-dimensional convolutional neural network (1DCNN) model, the experimental results demonstrate that the FS-I1DCNN model’s overall accuracy increases by 0.67% and 2.94%, respectively. Its accuracy, precision, recall, and F1-score were significantly better than those of the other intrusion detection models, including SVM and DBN.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.