{"title":"High-precision point cloud registration method based on volume image correlation","authors":"Lianpo Wang","doi":"10.1088/1361-6501/ad1817","DOIUrl":null,"url":null,"abstract":"\n With the rapid development of binocular reconstruction, fringe projection profilometry, and time of flight (ToF), 3D imaging technology has been widely applied in the field of 3D measurement. However, due to limited measurement range and self-occlusion, point cloud registration methods are often used to obtain larger or more complete 3D contours. Although many scholars have proposed various point cloud registration methods, the accuracy and efficiency of point cloud registration still need to be further improved, especially for point clouds with different density or non-rigid transformation. Image registration technology based on image correlation has been developed for many years and has achieved great success in fields such as computer vision, photomechanics, and photogrammetry. Therefore, a simple and direct idea in this paper is to transform the point cloud registration problem into volume image correlation problem. By this, an efficient image registration method based on Fast Fourier transform and an inverse compositional Gaussian Newton (IC-GN) optimization method that only needs to calculate the Hessian matrix once can be introduced into the point cloud registration field, which can greatly improve the speed and accuracy of point cloud registration. Comparative experiments have shown that our method has doubled the accuracy and efficiency compared to the ICP method, and its practicality has also been verified in impeller reconstruction experiments.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"63 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1817","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of binocular reconstruction, fringe projection profilometry, and time of flight (ToF), 3D imaging technology has been widely applied in the field of 3D measurement. However, due to limited measurement range and self-occlusion, point cloud registration methods are often used to obtain larger or more complete 3D contours. Although many scholars have proposed various point cloud registration methods, the accuracy and efficiency of point cloud registration still need to be further improved, especially for point clouds with different density or non-rigid transformation. Image registration technology based on image correlation has been developed for many years and has achieved great success in fields such as computer vision, photomechanics, and photogrammetry. Therefore, a simple and direct idea in this paper is to transform the point cloud registration problem into volume image correlation problem. By this, an efficient image registration method based on Fast Fourier transform and an inverse compositional Gaussian Newton (IC-GN) optimization method that only needs to calculate the Hessian matrix once can be introduced into the point cloud registration field, which can greatly improve the speed and accuracy of point cloud registration. Comparative experiments have shown that our method has doubled the accuracy and efficiency compared to the ICP method, and its practicality has also been verified in impeller reconstruction experiments.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.