ClimShift – A new toolbox for the detection of climate change

IF 3.3 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Zsolt Magyari-Sáska, Adina-Eliza Croitoru, Csaba Horváth, Ștefan Dombay
{"title":"ClimShift – A new toolbox for the detection of climate change","authors":"Zsolt Magyari-Sáska,&nbsp;Adina-Eliza Croitoru,&nbsp;Csaba Horváth,&nbsp;Ștefan Dombay","doi":"10.1002/gdj3.234","DOIUrl":null,"url":null,"abstract":"<p>Climate change no longer involves and affects just a few people or communities. However, most of them need climate change detection studies to adapt to the current and future climate conditions efficiently. The present research aimed to detect climate changes by considering the shift in climate conditions from one region to another over different periods based on a similarity index in the Carpathians basin using the new ClimShift toolbox, specially created for this purpose. Developed in R, based on the cosine similarity index and using a set of 32 climate indices (temperature and precipitation), ClimShift uses NC raster format (NetCDF files) as input data. The application is compatible with Microsoft and Unix/Linux environments. The toolbox allows the detection of forward and backward climate shifts. The results can be employed as a Climate Service and are extremely helpful for an efficient process of adaption to climate changes at a local/regional scale. A user-friendly interface and a tutorial on how to use the toolbox are also available. The toolbox was tested for four locations in the Carpathians Basin (Vienna, Bekes, Cluj-Napoca and Kosice) using 1961–1990 as a base period and 1991–2021 as an analysis period for the forward climate shift analysis. For Cluj-Napoca, the application was also tested for the backward climate shift, using 1991–2021 as the base period and 1961–1990 as the analysis period, identifying the region where present climate conditions were specific during the older period. The scientific results indicated a significant shift towards the east and northeast from the older period to the most recent one and a low percentage (6%–10%) in the overlapping area with highly similar conditions between the two periods.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":"11 4","pages":"1058-1072"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.234","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.234","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change no longer involves and affects just a few people or communities. However, most of them need climate change detection studies to adapt to the current and future climate conditions efficiently. The present research aimed to detect climate changes by considering the shift in climate conditions from one region to another over different periods based on a similarity index in the Carpathians basin using the new ClimShift toolbox, specially created for this purpose. Developed in R, based on the cosine similarity index and using a set of 32 climate indices (temperature and precipitation), ClimShift uses NC raster format (NetCDF files) as input data. The application is compatible with Microsoft and Unix/Linux environments. The toolbox allows the detection of forward and backward climate shifts. The results can be employed as a Climate Service and are extremely helpful for an efficient process of adaption to climate changes at a local/regional scale. A user-friendly interface and a tutorial on how to use the toolbox are also available. The toolbox was tested for four locations in the Carpathians Basin (Vienna, Bekes, Cluj-Napoca and Kosice) using 1961–1990 as a base period and 1991–2021 as an analysis period for the forward climate shift analysis. For Cluj-Napoca, the application was also tested for the backward climate shift, using 1991–2021 as the base period and 1961–1990 as the analysis period, identifying the region where present climate conditions were specific during the older period. The scientific results indicated a significant shift towards the east and northeast from the older period to the most recent one and a low percentage (6%–10%) in the overlapping area with highly similar conditions between the two periods.

Abstract Image

Abstract Image

ClimShift - 检测气候变化的新工具箱
气候变化不再只涉及和影响少数人或社区。然而,大多数人或社区需要进行气候变化探测研究,以有效适应当前和未来的气候条件。本研究旨在利用专门为此目的创建的新 ClimShift 工具箱,根据喀尔巴阡山脉盆地不同时期的相似性指数,考虑从一个地区到另一个地区的气候条件变化,从而探测气候变化。ClimShift 采用 R 语言开发,以余弦相似性指数为基础,使用一套 32 个气候指数(温度和降水量),使用 NC 栅格格式(NetCDF 文件)作为输入数据。该应用程序兼容微软和 Unix/Linux 环境。工具箱可检测气候的前向和后向移动。其结果可作为气候服务使用,对在地方/区域范围内有效适应气候变化过程极有帮助。此外,还提供了一个用户友好型界面和如何使用该工具箱的教程。该工具箱在喀尔巴阡山盆地的四个地点(维也纳、贝克斯、克卢日-纳波卡和科希策)进行了测试,以 1961-1990 年为基期,1991-2021 年为分析期,进行气候前向转变分析。对于克卢日-纳波卡,还以 1991-2021 年为基期,以 1961-1990 年为分析期,对气候后向转变进行了测试,确定了目前的气候条件在较早时期的特定区域。科学结果表明,从较早时期到最近时期,气候明显向东部和东北部移动,两个时期气候条件高度相似的重叠区域比例较低(6%-10%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscience Data Journal
Geoscience Data Journal GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍: Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered. An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices. Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信