{"title":"Hybrid traffic scheduling in time-sensitive networking for the support of automotive applications","authors":"Hongrui Nie, Yue Su, Weibo Zhao, Junsheng Mu","doi":"10.1049/cmu2.12713","DOIUrl":null,"url":null,"abstract":"<p>Time-sensitive networking (TSN) is considered one of the most promising solutions to address real-time scheduling in in-vehicle network due to its capabilities for providing deterministic service. The TSN working group proposed various traffic shaping mechanisms, while deterministic scheduling of hybrid traffic is still not effectively solved since the traffic requirements are difficult to satisfy by standalone or combined mechanisms with fixed time slot divisions. This article presents a time-aware multi-cyclicqueuing and forwarding scheduling model, that integrates the no-wait enabled time-aware shaper and multi-cyclic queuing and forwarding shaping models. Then, a scheduling solution, dubbed “TSN scheduling optimizer” (TSO) is proposed that combines optimization methods and incremental techniques. TSO aims to balance the load to maximize flow schedulability while guaranteeing the service requirements of hybrid traffic. Simulation evaluations through OMNeT++ provide a performance assessment of this proposed scheduling model, which can satisfy multiple types of traffic transmission requirements. Furthermore, TSO is compared with other baseline scheduling solutions, and TSO shows efficacy regarding execution time and schedulability.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 2","pages":"111-128"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12713","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12713","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Time-sensitive networking (TSN) is considered one of the most promising solutions to address real-time scheduling in in-vehicle network due to its capabilities for providing deterministic service. The TSN working group proposed various traffic shaping mechanisms, while deterministic scheduling of hybrid traffic is still not effectively solved since the traffic requirements are difficult to satisfy by standalone or combined mechanisms with fixed time slot divisions. This article presents a time-aware multi-cyclicqueuing and forwarding scheduling model, that integrates the no-wait enabled time-aware shaper and multi-cyclic queuing and forwarding shaping models. Then, a scheduling solution, dubbed “TSN scheduling optimizer” (TSO) is proposed that combines optimization methods and incremental techniques. TSO aims to balance the load to maximize flow schedulability while guaranteeing the service requirements of hybrid traffic. Simulation evaluations through OMNeT++ provide a performance assessment of this proposed scheduling model, which can satisfy multiple types of traffic transmission requirements. Furthermore, TSO is compared with other baseline scheduling solutions, and TSO shows efficacy regarding execution time and schedulability.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf