{"title":"Unsupervised Feature Selection with Latent Relationship Penalty Term","authors":"Ziping Ma, Yulei Huang, Huirong Li, Jingyu Wang","doi":"10.3390/axioms13010006","DOIUrl":null,"url":null,"abstract":"With the exponential growth of high dimensional unlabeled data, unsupervised feature selection (UFS) has attracted considerable attention due to its excellent performance in machine learning. Existing UFS methods implicitly assigned the same attribute score to each sample, which disregarded the distinctiveness of features and weakened the clustering performance of UFS methods to some extent. To alleviate these issues, a novel UFS method is proposed, named unsupervised feature selection with latent relationship penalty term (LRPFS). Firstly, latent learning is innovatively designed by assigning explicitly an attribute score to each sample according to its unique importance in clustering results. With this strategy, the inevitable noise interference can be removed effectively while retaining the intrinsic structure of data samples. Secondly, an appropriate sparse model is incorporated into the penalty term to further optimize its roles as follows: (1) It imposes potential constraints on the feature matrix to guarantee the uniqueness of the solution. (2) The interconnection between data instances is established by a pairwise relationship situation. Extensive experiments on benchmark datasets demonstrate that the proposed method is superior to relevant state-of-the-art algorithms with an average improvement of 10.17% in terms of accuracy.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"68 22","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13010006","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
With the exponential growth of high dimensional unlabeled data, unsupervised feature selection (UFS) has attracted considerable attention due to its excellent performance in machine learning. Existing UFS methods implicitly assigned the same attribute score to each sample, which disregarded the distinctiveness of features and weakened the clustering performance of UFS methods to some extent. To alleviate these issues, a novel UFS method is proposed, named unsupervised feature selection with latent relationship penalty term (LRPFS). Firstly, latent learning is innovatively designed by assigning explicitly an attribute score to each sample according to its unique importance in clustering results. With this strategy, the inevitable noise interference can be removed effectively while retaining the intrinsic structure of data samples. Secondly, an appropriate sparse model is incorporated into the penalty term to further optimize its roles as follows: (1) It imposes potential constraints on the feature matrix to guarantee the uniqueness of the solution. (2) The interconnection between data instances is established by a pairwise relationship situation. Extensive experiments on benchmark datasets demonstrate that the proposed method is superior to relevant state-of-the-art algorithms with an average improvement of 10.17% in terms of accuracy.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.