{"title":"HCNN-LSTM: Hybrid Convolutional Neural Network with Long Short-Term Memory Integrated for Legitimate Web Prediction","authors":"Candra Zonyfar;Jung-Been Lee;Jeong-Dong Kim","doi":"10.13052/jwe1540-9589.2251","DOIUrl":null,"url":null,"abstract":"Phishing techniques are the most frequently used threat by attackers to deceive Internet users and obtain sensitive victim information, such as login credentials and credit card numbers. So, it is important for users to know the legitimate website to avoid the traps of fake websites. However, it is difficult for lay users to distinguish legitimate websites, considering that phishing techniques are always developing from time to time. Therefore, a legitimate website detection system is an easy way for users to avoid phishing websites. To address this problem, we present a hybrid deep learning model by combining a convolution neural network and long short-term memory (HCNN-LSTM). A one-dimensional CNN with a LSTM network shared estimation of all sublayers, then implements the proposed model in the benchmark dataset for phishing prediction, which consists of 11430 URLs with 87 attributes extracted of which 56 parameters are selected from URL structure and syntax. The HCNN-LSTM model was successful in binary classification with accuracy, precision, recall, and F1-score of 95.19%, 95.00%, 95.00%, 95.00%, successively outperforming the CNN and LSTM. Thus, the results show that our proposed model is a competitive new model for the legitimate web prediction tasks.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"22 5","pages":"757-782"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10374423","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10374423/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Phishing techniques are the most frequently used threat by attackers to deceive Internet users and obtain sensitive victim information, such as login credentials and credit card numbers. So, it is important for users to know the legitimate website to avoid the traps of fake websites. However, it is difficult for lay users to distinguish legitimate websites, considering that phishing techniques are always developing from time to time. Therefore, a legitimate website detection system is an easy way for users to avoid phishing websites. To address this problem, we present a hybrid deep learning model by combining a convolution neural network and long short-term memory (HCNN-LSTM). A one-dimensional CNN with a LSTM network shared estimation of all sublayers, then implements the proposed model in the benchmark dataset for phishing prediction, which consists of 11430 URLs with 87 attributes extracted of which 56 parameters are selected from URL structure and syntax. The HCNN-LSTM model was successful in binary classification with accuracy, precision, recall, and F1-score of 95.19%, 95.00%, 95.00%, 95.00%, successively outperforming the CNN and LSTM. Thus, the results show that our proposed model is a competitive new model for the legitimate web prediction tasks.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.