A flexible Bayesian hierarchical quantile spatial model for areal data

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rafael Cabral Fernandez, Kelly Cristina Mota Gonçalves, João Batista de Morais Pereira
{"title":"A flexible Bayesian hierarchical quantile spatial model for areal data","authors":"Rafael Cabral Fernandez, Kelly Cristina Mota Gonçalves, João Batista de Morais Pereira","doi":"10.1177/1471082x231204930","DOIUrl":null,"url":null,"abstract":"This article introduces a new class of nested models that extends the literature standard combination of spatial autoregressive model for areal data with parametric quantile regression by considering an asymmetric Laplace distribution for the random errors. In addition to being more flexible, the new proposed model can incorporate a hierarchical structure, allowing it to deal with clustered data. Such an approach produces a robust statistical method for modeling the quantiles of areal data distributed in a geographically hierarchical setting. The proposed non-hierarchical model is evaluated using a wellknown house pricing dataset and a simulation study. In addition, its hierarchical version is applied to a real dataset of math scores related to public high schools within the metropolitan area of Rio de Janeiro, Brazil.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x231204930","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a new class of nested models that extends the literature standard combination of spatial autoregressive model for areal data with parametric quantile regression by considering an asymmetric Laplace distribution for the random errors. In addition to being more flexible, the new proposed model can incorporate a hierarchical structure, allowing it to deal with clustered data. Such an approach produces a robust statistical method for modeling the quantiles of areal data distributed in a geographically hierarchical setting. The proposed non-hierarchical model is evaluated using a wellknown house pricing dataset and a simulation study. In addition, its hierarchical version is applied to a real dataset of math scores related to public high schools within the metropolitan area of Rio de Janeiro, Brazil.
用于地形数据的灵活贝叶斯分层量化空间模型
本文介绍了一类新的嵌套模型,通过考虑随机误差的非对称拉普拉斯分布,扩展了文献中的空间自回归模型与参数量子回归的标准组合。除了更加灵活之外,新提出的模型还可以结合层次结构,从而处理聚类数据。这种方法产生了一种稳健的统计方法,可用于对分布在地理分层环境中的areal数据进行量化建模。我们使用一个著名的房屋定价数据集和一项模拟研究对所提出的非层次模型进行了评估。此外,该模型的分层版本还应用于巴西里约热内卢大都会地区公立高中数学分数的真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信