Assessing the effects of different tillage systems on selected physical and chemical properties of a silty clay loam soil under different field conditions in the Czech Republic
David Kwesi Abebrese, Recep Serdar Kara, K. Báťková, J. K. M. Biney, S. Matula
{"title":"Assessing the effects of different tillage systems on selected physical and chemical properties of a silty clay loam soil under different field conditions in the Czech Republic","authors":"David Kwesi Abebrese, Recep Serdar Kara, K. Báťková, J. K. M. Biney, S. Matula","doi":"10.1111/sum.13007","DOIUrl":null,"url":null,"abstract":"Under the recent water‐limiting crisis on farmlands in the Czech Republic, more sustainable approaches to improve water infiltration and suction within the soil layer useful for plant growth is crucial. This study sought to explore changes induced by applied tillage system, and time after tillage (considering two field conditions; at crop maturity when the soil had consolidated long after tillage, and after tillage and seeding operations). The tillage systems investigated were reduced tillage (RT), occasional tillage (OT), no tillage (NT) and conventional tillage (CT). Soil properties at 0 – 30 cm depth analyzed were dry bulk density, soil organic matter content, saturated volumetric water content and saturated hydraulic conductivity. After the tillage and seeding operations, soil organic matter increased on all conservation tillage plots (RT, OT and NT) but decreased under CT. Insignificant changes in dry bulk density were observed on the conservation tillage plots whereas CT reduced dry bulk density by 15.3%. Saturated hydraulic conductivity fluctuated significantly under OT and CT, while remaining stable under RT and NT. Generally, significant variability in organic matter influenced changes in saturated volumetric water content and saturated hydraulic conductivity. Changes in dry bulk density on all the tilled plots (RT, OT, and CT) did not show any significant relationship with saturated volumetric water content. Likewise, no significant relationship between changes in bulk density and saturated hydraulic conductivity on all plots were observed. While organic matter improvements under OT positively correlated with saturated volumetric water content, its seasonal dynamics under saturated hydraulic conductivity can be further studied. CT causes high instabilities in both saturated volumetric water content and saturated hydraulic conductivity leading to impaired characteristics during the soil's consolidated state.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"28 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Use and Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/sum.13007","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Under the recent water‐limiting crisis on farmlands in the Czech Republic, more sustainable approaches to improve water infiltration and suction within the soil layer useful for plant growth is crucial. This study sought to explore changes induced by applied tillage system, and time after tillage (considering two field conditions; at crop maturity when the soil had consolidated long after tillage, and after tillage and seeding operations). The tillage systems investigated were reduced tillage (RT), occasional tillage (OT), no tillage (NT) and conventional tillage (CT). Soil properties at 0 – 30 cm depth analyzed were dry bulk density, soil organic matter content, saturated volumetric water content and saturated hydraulic conductivity. After the tillage and seeding operations, soil organic matter increased on all conservation tillage plots (RT, OT and NT) but decreased under CT. Insignificant changes in dry bulk density were observed on the conservation tillage plots whereas CT reduced dry bulk density by 15.3%. Saturated hydraulic conductivity fluctuated significantly under OT and CT, while remaining stable under RT and NT. Generally, significant variability in organic matter influenced changes in saturated volumetric water content and saturated hydraulic conductivity. Changes in dry bulk density on all the tilled plots (RT, OT, and CT) did not show any significant relationship with saturated volumetric water content. Likewise, no significant relationship between changes in bulk density and saturated hydraulic conductivity on all plots were observed. While organic matter improvements under OT positively correlated with saturated volumetric water content, its seasonal dynamics under saturated hydraulic conductivity can be further studied. CT causes high instabilities in both saturated volumetric water content and saturated hydraulic conductivity leading to impaired characteristics during the soil's consolidated state.
期刊介绍:
Soil Use and Management publishes in soil science, earth and environmental science, agricultural science, and engineering fields. The submitted papers should consider the underlying mechanisms governing the natural and anthropogenic processes which affect soil systems, and should inform policy makers and/or practitioners on the sustainable use and management of soil resources. Interdisciplinary studies, e.g. linking soil with climate change, biodiversity, global health, and the UN’s sustainable development goals, with strong novelty, wide implications, and unexpected outcomes are welcomed.