Improving Ranking Using Hybrid Custom Embedding Models on Persian Web

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Shekoofe Bostan;Ali Mohammad Zareh Bidoki;Mohammad-Reza Pajoohan
{"title":"Improving Ranking Using Hybrid Custom Embedding Models on Persian Web","authors":"Shekoofe Bostan;Ali Mohammad Zareh Bidoki;Mohammad-Reza Pajoohan","doi":"10.13052/jwe1540-9589.2253","DOIUrl":null,"url":null,"abstract":"Ranking plays a crucial role in information retrieval systems, especially in the context of web search engines. This article presents a new ranking approach that utilizes semantic vectors and embedding models to enhance the accuracy of web document ranking, particularly in languages with complex structures like Persian. The article utilizes two real-world datasets, one obtained through web crawling to collect a large-scale Persian web corpus, and the other consisting of real user queries and web documents labeled with a relevancy score. The datasets are used to train embedding models using a combination of static Word2Vec and dynamic BERT algorithms. The proposed hybrid ranking formula incorporates these semantic vectors and presents a novel approach to document ranking called HybridMaxSim. Experiments conducted indicate that the HybridMaxSim formula is effective in enhancing the precision of web document ranking up to 0.87 according to the nDCG criterion.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"22 5","pages":"797-820"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10374421","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10374421/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Ranking plays a crucial role in information retrieval systems, especially in the context of web search engines. This article presents a new ranking approach that utilizes semantic vectors and embedding models to enhance the accuracy of web document ranking, particularly in languages with complex structures like Persian. The article utilizes two real-world datasets, one obtained through web crawling to collect a large-scale Persian web corpus, and the other consisting of real user queries and web documents labeled with a relevancy score. The datasets are used to train embedding models using a combination of static Word2Vec and dynamic BERT algorithms. The proposed hybrid ranking formula incorporates these semantic vectors and presents a novel approach to document ranking called HybridMaxSim. Experiments conducted indicate that the HybridMaxSim formula is effective in enhancing the precision of web document ranking up to 0.87 according to the nDCG criterion.
使用混合自定义嵌入模型提高波斯语网络排名
排序在信息检索系统中起着至关重要的作用,尤其是在网络搜索引擎中。本文介绍了一种新的排序方法,它利用语义向量和嵌入模型来提高网络文档排序的准确性,尤其是在像波斯语这样结构复杂的语言中。文章利用了两个真实世界的数据集,一个是通过网络爬行收集到的大规模波斯语网络语料库,另一个由真实用户查询和标有相关性分数的网络文档组成。利用这些数据集,结合静态 Word2Vec 算法和动态 BERT 算法训练嵌入模型。所提出的混合排序公式包含了这些语义向量,并提出了一种名为 HybridMaxSim 的新型文档排序方法。实验表明,根据 nDCG 标准,HybridMaxSim 公式能有效提高网络文档排名的精确度,最高可达 0.87。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Web Engineering
Journal of Web Engineering 工程技术-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
62
审稿时长
9 months
期刊介绍: The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信