{"title":"The Rotation Number for Almost Periodic Potentials with Jump Discontinuities and \\(\\delta \\)-Interactions","authors":"David Damanik, Meirong Zhang, Zhe Zhou","doi":"10.1007/s00023-023-01404-z","DOIUrl":null,"url":null,"abstract":"<div><p>We consider one-dimensional Schrödinger operators with generalized almost periodic potentials with jump discontinuities and <span>\\(\\delta \\)</span>-interactions. For operators of this kind, we introduce a rotation number in the spirit of Johnson and Moser. To do this, we introduce the concept of almost periodicity at a rather general level, and then the almost periodic function with jump discontinuities and <span>\\(\\delta \\)</span>-interactions as an application.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 2","pages":"1359 - 1397"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01404-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We consider one-dimensional Schrödinger operators with generalized almost periodic potentials with jump discontinuities and \(\delta \)-interactions. For operators of this kind, we introduce a rotation number in the spirit of Johnson and Moser. To do this, we introduce the concept of almost periodicity at a rather general level, and then the almost periodic function with jump discontinuities and \(\delta \)-interactions as an application.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.