The Rotation Number for Almost Periodic Potentials with Jump Discontinuities and \(\delta \)-Interactions

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
David Damanik, Meirong Zhang, Zhe Zhou
{"title":"The Rotation Number for Almost Periodic Potentials with Jump Discontinuities and \\(\\delta \\)-Interactions","authors":"David Damanik,&nbsp;Meirong Zhang,&nbsp;Zhe Zhou","doi":"10.1007/s00023-023-01404-z","DOIUrl":null,"url":null,"abstract":"<div><p>We consider one-dimensional Schrödinger operators with generalized almost periodic potentials with jump discontinuities and <span>\\(\\delta \\)</span>-interactions. For operators of this kind, we introduce a rotation number in the spirit of Johnson and Moser. To do this, we introduce the concept of almost periodicity at a rather general level, and then the almost periodic function with jump discontinuities and <span>\\(\\delta \\)</span>-interactions as an application.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 2","pages":"1359 - 1397"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01404-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider one-dimensional Schrödinger operators with generalized almost periodic potentials with jump discontinuities and \(\delta \)-interactions. For operators of this kind, we introduce a rotation number in the spirit of Johnson and Moser. To do this, we introduce the concept of almost periodicity at a rather general level, and then the almost periodic function with jump discontinuities and \(\delta \)-interactions as an application.

具有跃迁不连续和 $$\delta $$ 相互作用的几乎周期势的旋转数
我们考虑具有广义几乎周期势的一维薛定谔算子,它们具有跳跃不连续性和(\delta \)相互作用。对于这类算子,我们按照约翰逊和莫泽的精神引入了旋转数。为此,我们在一个相当一般的层面上引入了几乎周期性的概念,然后将具有跳跃不连续和(\delta \)相互作用的几乎周期函数作为一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信