On some combinatorial properties of bihyperbolic numbers of the Lucas type.

F. Torunbalcı Aydın
{"title":"On some combinatorial properties of bihyperbolic numbers of the Lucas type.","authors":"F. Torunbalcı Aydın","doi":"10.33434/cams.1372245","DOIUrl":null,"url":null,"abstract":"In the literature until today, many authors have studied special sequences in different number systems. In this article, we examined the combinatorial properties of Lucas-type bihyperbolic numbers. Lucas bihyperbolic numbers were studied by Azak \\cite{aza} in 2020. For this reason, only bihyperbolic Jacobsthal-Lucas and Pell-Lucas numbers were examined using Jacobsthal-Lucas and Pell-Lucas numbers. We also give some algebraic properties of bihyperbolic Jacobsthal-Lucas and bihyperbolic Pell-Lucas numbers, such as the recursion relation, generating function, Binet formula, D'Ocagne identity, Cassini identity, Catalan identity and Honsberger identity.","PeriodicalId":491673,"journal":{"name":"Communications in advanced mathematical sciences","volume":"40 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in advanced mathematical sciences","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.33434/cams.1372245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the literature until today, many authors have studied special sequences in different number systems. In this article, we examined the combinatorial properties of Lucas-type bihyperbolic numbers. Lucas bihyperbolic numbers were studied by Azak \cite{aza} in 2020. For this reason, only bihyperbolic Jacobsthal-Lucas and Pell-Lucas numbers were examined using Jacobsthal-Lucas and Pell-Lucas numbers. We also give some algebraic properties of bihyperbolic Jacobsthal-Lucas and bihyperbolic Pell-Lucas numbers, such as the recursion relation, generating function, Binet formula, D'Ocagne identity, Cassini identity, Catalan identity and Honsberger identity.
论卢卡斯型双双曲数的一些组合性质
在迄今为止的文献中,许多学者研究了不同数系中的特殊序列。本文研究了卢卡斯型双双曲数的组合性质。卢卡斯双曲数是阿扎克(Azak \cite{aza})在 2020 年研究的。因此,我们只用雅各布斯塔尔-卢卡斯数和佩尔-卢卡斯数研究了双双曲数。我们还给出了双双曲雅各布斯塔尔-卢卡斯数和双双曲佩尔-卢卡斯数的一些代数性质,如递归关系、生成函数、比内公式、达卡涅同一性、卡西尼同一性、加泰罗尼亚同一性和洪斯贝格同一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信