On the state of the second part of Hilbert’s fifth problem

IF 0.9 3区 数学 Q2 MATHEMATICS
Antal Járai
{"title":"On the state of the second part of Hilbert’s fifth problem","authors":"Antal Járai","doi":"10.1007/s00010-023-01021-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the second part of his fifth problem Hilbert asks for functional equations “In how far are the assertions which we can make in the case of differentiable functions true under proper modifications without this assumption.” In the case of the general functional equation </p><div><div><span>$$\\begin{aligned} f(x)=h\\Bigl (x,y,\\bigl (g_1(x,y)\\bigr ),\\ldots ,\\bigl (g_n(x,y)\\bigr )\\Bigr ) \\end{aligned}$$</span></div></div><p>for the unknown function <i>f</i> under natural condition for the given functions it is proved on compact manifolds that <span>\\(f\\in C^{-1}\\)</span> implies <span>\\(f\\in C^{\\infty }\\)</span> and practically the general case can also be treated. The natural conditions imply that the dimension of <i>x</i> cannot be larger than the dimension of <i>y</i>. If we remove this condition, then we have to add another condition. In this survey paper a new problem for this second case is formulated and results are summarised for both cases.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-023-01021-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-023-01021-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the second part of his fifth problem Hilbert asks for functional equations “In how far are the assertions which we can make in the case of differentiable functions true under proper modifications without this assumption.” In the case of the general functional equation

$$\begin{aligned} f(x)=h\Bigl (x,y,\bigl (g_1(x,y)\bigr ),\ldots ,\bigl (g_n(x,y)\bigr )\Bigr ) \end{aligned}$$

for the unknown function f under natural condition for the given functions it is proved on compact manifolds that \(f\in C^{-1}\) implies \(f\in C^{\infty }\) and practically the general case can also be treated. The natural conditions imply that the dimension of x cannot be larger than the dimension of y. If we remove this condition, then we have to add another condition. In this survey paper a new problem for this second case is formulated and results are summarised for both cases.

关于希尔伯特第五问题第二部分的状况
希尔伯特在他的第五个问题的第二部分中针对函数方程提出了这样的问题:"在没有这个假设的情况下,我们在可微函数的情况下所做的断言在多大程度上是正确的?在一般函数方程的情况下 $$begin{aligned} f(x)=h\Bigl (x,y,\bigl (g_1(x,y)\bigr ),\ldots ,\bigl (g_n(x,y)\bigr )\Bigr )\end{aligned}$$对于未知函数 f,在给定函数的自然条件下,在紧凑流形上证明了 (f/in C^{-1}\) 意味着 (f/in C^{infty }\) 并且实际上一般情况也可以处理。自然条件意味着 x 的维数不能大于 y 的维数。本研究论文针对第二种情况提出了一个新问题,并总结了两种情况的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信