Action-angle variables for the Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq equation

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Xue Geng, Dianlou Du, Xianguo Geng
{"title":"Action-angle variables for the Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq equation","authors":"Xue Geng, Dianlou Du, Xianguo Geng","doi":"10.3389/fphy.2023.1285301","DOIUrl":null,"url":null,"abstract":"In this work, we present two finite-dimensional Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq equation by using the nonlinearization method. Moreover, the separation of variables on the common level set of Casimir functions is introduced to study these systems which are associated with a non-hyperelliptic algebraic curve. Finally, in light of the Hamilton–Jacobi theory, the action-angle variables for these systems are constructed, and the Jacobi inversion problem associated with the Hirota–Satsuma modified Boussinesq equation is obtained.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"60 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2023.1285301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present two finite-dimensional Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq equation by using the nonlinearization method. Moreover, the separation of variables on the common level set of Casimir functions is introduced to study these systems which are associated with a non-hyperelliptic algebraic curve. Finally, in light of the Hamilton–Jacobi theory, the action-angle variables for these systems are constructed, and the Jacobi inversion problem associated with the Hirota–Satsuma modified Boussinesq equation is obtained.
与广田-萨摩修正布辛斯方程相关的列-泊松哈密顿系统的作用角变量
在这项研究中,我们利用非线性化方法提出了两个与广田-萨摩修正布辛斯方程相关的有限维李-泊松哈密顿系统。此外,我们还引入了卡西米尔函数公共水平集上的分离变量来研究这些与非椭圆代数曲线相关的系统。最后,根据汉密尔顿-雅可比理论,构建了这些系统的作用角变量,并得到了与广田-萨摩修正布辛斯方程相关的雅可比反演问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信