Mass Spectrometry Study about In Vitro and In Vivo Reaction between Metformin and Glucose: A Preliminary Investigation on Alternative Biological Behavior
G. Bartolucci, M. Pallecchi, Laura Braconi, S. Dei, E. Teodori, A. Lapolla, G. Sartore, Pietro Traldi
{"title":"Mass Spectrometry Study about In Vitro and In Vivo Reaction between Metformin and Glucose: A Preliminary Investigation on Alternative Biological Behavior","authors":"G. Bartolucci, M. Pallecchi, Laura Braconi, S. Dei, E. Teodori, A. Lapolla, G. Sartore, Pietro Traldi","doi":"10.3390/ijms25010180","DOIUrl":null,"url":null,"abstract":"Metformin is the most prescribed glucose-lowering drug worldwide; globally, over 100 million patients are prescribed this drug annually. Some different action mechanisms have been proposed for this drug, but, surprisingly, no metabolite of metformin has ever been described. It was considered interesting to investigate the possible reaction of metformin with glucose following the Maillard reaction pattern. The reaction was first performed in in vitro conditions, showing the formation of two adducts that originated by the condensation of the two molecular species with the losses of one or two water molecules. Their structures were investigated by liquid chromatography coupled with mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS) and accurate mass measurements (HRMS). The species originated via the reaction of glucose and metformin and were called metformose and dehydrometformose, and some structural hypotheses were conducted. It is worth to emphasize that they were detected in urine samples from a diabetic patient treated with metformin and consequently they must be considered metabolites of the drug, which has never been identified before now. The glucose-related substructure of these compounds could reflect an improved transfer across cell membranes and, consequently, new hypotheses could be made about the biological targets of metformin.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":"87 4","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25010180","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metformin is the most prescribed glucose-lowering drug worldwide; globally, over 100 million patients are prescribed this drug annually. Some different action mechanisms have been proposed for this drug, but, surprisingly, no metabolite of metformin has ever been described. It was considered interesting to investigate the possible reaction of metformin with glucose following the Maillard reaction pattern. The reaction was first performed in in vitro conditions, showing the formation of two adducts that originated by the condensation of the two molecular species with the losses of one or two water molecules. Their structures were investigated by liquid chromatography coupled with mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS) and accurate mass measurements (HRMS). The species originated via the reaction of glucose and metformin and were called metformose and dehydrometformose, and some structural hypotheses were conducted. It is worth to emphasize that they were detected in urine samples from a diabetic patient treated with metformin and consequently they must be considered metabolites of the drug, which has never been identified before now. The glucose-related substructure of these compounds could reflect an improved transfer across cell membranes and, consequently, new hypotheses could be made about the biological targets of metformin.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).