Light-weight color image conversion like pencil drawing for high-level synthesized hardware

IF 0.8 Q4 ROBOTICS
Honoka Tani, Akira Yamawaki
{"title":"Light-weight color image conversion like pencil drawing for high-level synthesized hardware","authors":"Honoka Tani,&nbsp;Akira Yamawaki","doi":"10.1007/s10015-023-00927-2","DOIUrl":null,"url":null,"abstract":"<div><p>We are developing pencil-drawing-style image conversion software suitable for high-level synthesis, HLS, technology that automatically converts software into hardware. The pencil-drawing-style image conversion consists of the former and latter processes. The former generates the images expressing edge strengths and their directions. The latter process convolves the line segment corresponding to the edge strength with its direction. As hardware-oriented software description, the medium data across the former and latter processes are optimized. In addition, the former and latter processes are overlapped between the FIFO buffer passing the medium data. The obtained image is still a gray-scaled image. To make it support the color image, this paper inserts a process compositing the original color image with the grayed pencil-drawing-style image to not intervene in the pipelined data path behavior. As a result, an HLS tool used is expected to generate a hardware module with the ideal pipelined data path by one output data/one clock. The experimental results show that the colorization hardware had no significant performance degradation issues for circuit size, run time, or power efficiency compared to the pencil drawing hardware with grayscale. Compared with the software execution, our hardware supporting color image can achieve 4.2 times the performance improvement and 130 times power efficiency.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"29 1","pages":"29 - 36"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00927-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are developing pencil-drawing-style image conversion software suitable for high-level synthesis, HLS, technology that automatically converts software into hardware. The pencil-drawing-style image conversion consists of the former and latter processes. The former generates the images expressing edge strengths and their directions. The latter process convolves the line segment corresponding to the edge strength with its direction. As hardware-oriented software description, the medium data across the former and latter processes are optimized. In addition, the former and latter processes are overlapped between the FIFO buffer passing the medium data. The obtained image is still a gray-scaled image. To make it support the color image, this paper inserts a process compositing the original color image with the grayed pencil-drawing-style image to not intervene in the pipelined data path behavior. As a result, an HLS tool used is expected to generate a hardware module with the ideal pipelined data path by one output data/one clock. The experimental results show that the colorization hardware had no significant performance degradation issues for circuit size, run time, or power efficiency compared to the pencil drawing hardware with grayscale. Compared with the software execution, our hardware supporting color image can achieve 4.2 times the performance improvement and 130 times power efficiency.

Abstract Image

轻量级彩色图像转换,如高级合成硬件的铅笔画
我们正在开发适用于将软件自动转换为硬件的高级合成(HLS)技术的铅笔画式图像转换软件。铅笔画式图像转换由前者和后者两个过程组成。前者生成表示边缘强度及其方向的图像。后一过程将边缘强度对应的线段与其方向卷积在一起。作为面向硬件的软件描述,前处理过程和后处理过程的介质数据得到了优化。此外,在传递介质数据的 FIFO 缓冲区之间,前一流程和后一流程是重叠的。获得的图像仍然是灰度图像。为使其支持彩色图像,本文插入了一个将原始彩色图像与灰度铅笔画风格图像合成的进程,以避免干预流水线数据路径行为。因此,所使用的 HLS 工具有望通过一个输出数据/一个时钟生成具有理想流水线数据路径的硬件模块。实验结果表明,与灰度铅笔画硬件相比,着色硬件在电路尺寸、运行时间或能效方面没有明显的性能下降问题。与软件执行相比,我们的支持彩色图像的硬件可实现 4.2 倍的性能提升和 130 倍的功耗效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信