E. Field, K. Milner, A. Hatem, P. Powers, Fred F. Pollitz, A. Llenos, Yuehua Zeng, Kaj M. Johnson, Bruce E. Shaw, D. McPhillips, Jessica A. Thompson Jobe, A. Shumway, Andrew J. Michael, Zheng-Kang Shen, Eileen L. Evans, Elizabeth H. Hearn, C. Mueller, Arthur D. Frankel, Mark D. Petersen, C. DuRoss, Richard W. Briggs, M. Page, J. Rubinstein, Julie A. Herrick
{"title":"The USGS 2023 Conterminous U.S. Time-Independent Earthquake Rupture Forecast","authors":"E. Field, K. Milner, A. Hatem, P. Powers, Fred F. Pollitz, A. Llenos, Yuehua Zeng, Kaj M. Johnson, Bruce E. Shaw, D. McPhillips, Jessica A. Thompson Jobe, A. Shumway, Andrew J. Michael, Zheng-Kang Shen, Eileen L. Evans, Elizabeth H. Hearn, C. Mueller, Arthur D. Frankel, Mark D. Petersen, C. DuRoss, Richard W. Briggs, M. Page, J. Rubinstein, Julie A. Herrick","doi":"10.1785/0120230120","DOIUrl":null,"url":null,"abstract":"\n We present the 2023 U.S. Geological Survey time-independent earthquake rupture forecast for the conterminous United States, which gives authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes throughout the region. In addition to updating virtually all model components, a major focus has been to provide a better representation of epistemic uncertainties. For example, we have improved the representation of multifault ruptures, both in terms of allowing more and less fault connectivity than in the previous models, and in sweeping over a broader range of viable models. An unprecedented level of diagnostic information has been provided for assessing the model, and the development was overseen by a 19-member participatory review panel. Although we believe the new model embodies significant improvements and represents the best available science, we also discuss potential model limitations, including the applicability of logic tree branch weights with respect different types of hazard and risk metrics. Future improvements are also discussed, with deformation model enhancements being particularly worthy of pursuit, as well as better representation of sampling errors in the gridded seismicity components. We also plan to add time-dependent components, and assess implications with a wider range of hazard and risk metrics.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"10 14","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230120","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
We present the 2023 U.S. Geological Survey time-independent earthquake rupture forecast for the conterminous United States, which gives authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes throughout the region. In addition to updating virtually all model components, a major focus has been to provide a better representation of epistemic uncertainties. For example, we have improved the representation of multifault ruptures, both in terms of allowing more and less fault connectivity than in the previous models, and in sweeping over a broader range of viable models. An unprecedented level of diagnostic information has been provided for assessing the model, and the development was overseen by a 19-member participatory review panel. Although we believe the new model embodies significant improvements and represents the best available science, we also discuss potential model limitations, including the applicability of logic tree branch weights with respect different types of hazard and risk metrics. Future improvements are also discussed, with deformation model enhancements being particularly worthy of pursuit, as well as better representation of sampling errors in the gridded seismicity components. We also plan to add time-dependent components, and assess implications with a wider range of hazard and risk metrics.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.