{"title":"Analysing volatility patterns in emerging markets: symmetric or asymmetric models?","authors":"Himani Gupta","doi":"10.1108/jeas-07-2023-0186","DOIUrl":null,"url":null,"abstract":"PurposeInvestors aim for returns when investing in stocks, making return volatility a crucial concern. This study compares symmetric and asymmetric GARCH models to forecast volatility in emerging nations like the G4 countries. Accurate volatility forecasting is vital for investors to make well-informed investment decisions, forming the core purpose of this study.Design/methodology/approachFrom January 1993 to May 2021, the study spans four periods, focusing on the global economic crisis of 2008, the Russian crisis of 2015 and the COVID-19 pandemic. Standard generalized autoregressive conditional heteroscedasticity (GARCH), exponential GARCH (E-GARCH) and Glosten-Jagannathan-Runkle GARCH models were employed to analyse the data. Robustness was assessed using the Akaike information criterion, Schwarz information criterion and maximum log-likelihood criteria.FindingsThe study's findings show that the E-GARCH model is the best model for forecasting volatility in emerging nations. This is because the E-GARCH model is able to capture the asymmetric effects of positive and negative shocks on volatility.Originality/valueThis unique study compares symmetric and asymmetric GARCH models for forecasting volatility in emerging nations, a novel approach not explored in prior research. The insights gained can aid investors in constructing more effective risk-adjusted international portfolios, offering a better understanding of stock market volatility to inform strategic investment decisions.","PeriodicalId":44018,"journal":{"name":"Journal of Economic and Administrative Sciences","volume":"52 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic and Administrative Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jeas-07-2023-0186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeInvestors aim for returns when investing in stocks, making return volatility a crucial concern. This study compares symmetric and asymmetric GARCH models to forecast volatility in emerging nations like the G4 countries. Accurate volatility forecasting is vital for investors to make well-informed investment decisions, forming the core purpose of this study.Design/methodology/approachFrom January 1993 to May 2021, the study spans four periods, focusing on the global economic crisis of 2008, the Russian crisis of 2015 and the COVID-19 pandemic. Standard generalized autoregressive conditional heteroscedasticity (GARCH), exponential GARCH (E-GARCH) and Glosten-Jagannathan-Runkle GARCH models were employed to analyse the data. Robustness was assessed using the Akaike information criterion, Schwarz information criterion and maximum log-likelihood criteria.FindingsThe study's findings show that the E-GARCH model is the best model for forecasting volatility in emerging nations. This is because the E-GARCH model is able to capture the asymmetric effects of positive and negative shocks on volatility.Originality/valueThis unique study compares symmetric and asymmetric GARCH models for forecasting volatility in emerging nations, a novel approach not explored in prior research. The insights gained can aid investors in constructing more effective risk-adjusted international portfolios, offering a better understanding of stock market volatility to inform strategic investment decisions.