Sarit Prabha, Pallavi Chauhan, Sudeesh Warkare, Khushhali M Pandey
{"title":"A computational investigation of potential plant-based bioactive compounds against drug-resistant <i>Staphylococcus aureus</i> of multiple target proteins.","authors":"Sarit Prabha, Pallavi Chauhan, Sudeesh Warkare, Khushhali M Pandey","doi":"10.1080/07391102.2023.2297009","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-resistant <i>Staphylococcus aureus</i> (DRSA) poses a significant global health threat, like bacteremia, endocarditis, skin, soft tissue, bone, and joint infections. Nowadays, the resistance against conventional drugs has been a prompt and focused medical concern. The present study aimed to explore the inhibitory potential of plant-based bioactive compounds (PBBCs) against effective target proteins using a computational approach. We retrieved and verified 22 target proteins associated with DRSA and conducted a screening process that involved testing 87 PBBCs. Molecular docking was performed between screened PBBCs and reference drugs with selected target proteins via AutoDock. Subsequently, we filtered the target proteins and top PBBCs based on their binding affinity scores. Furthermore, molecular dynamic simulation was carried out through GROMACS for a duration of 100 ns, and the binding free energy was calculated using the gmx_MMPBSA. The result showed consistent hydrogen bonding interactions among the amino acid residues Ser 149, Arg 151, Thr 165, Thr 216, Glu 239, Ser 240, Ile 14, as well as Asn 18, Gln 19, Lys 45, Thr 46, Tyr 109, with their respective target proteins of the penicillin-binding protein and dihydrofolate reductase complex. Additionally, we assessed the pharmacokinetic properties of screened PBBCs <i>via</i> SwissADME and AdmetSAR. The findings suggest that β-amyrin, oleanolic acid, kaempferol, quercetin, and friedelin have the potential to inhibit the selected target proteins. In future research, both <i>in vitro</i> and <i>in vivo</i>, experiments will be needed to establish these PBBCs as potent antimicrobial drugs for DRSA.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"3311-3329"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2297009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-resistant Staphylococcus aureus (DRSA) poses a significant global health threat, like bacteremia, endocarditis, skin, soft tissue, bone, and joint infections. Nowadays, the resistance against conventional drugs has been a prompt and focused medical concern. The present study aimed to explore the inhibitory potential of plant-based bioactive compounds (PBBCs) against effective target proteins using a computational approach. We retrieved and verified 22 target proteins associated with DRSA and conducted a screening process that involved testing 87 PBBCs. Molecular docking was performed between screened PBBCs and reference drugs with selected target proteins via AutoDock. Subsequently, we filtered the target proteins and top PBBCs based on their binding affinity scores. Furthermore, molecular dynamic simulation was carried out through GROMACS for a duration of 100 ns, and the binding free energy was calculated using the gmx_MMPBSA. The result showed consistent hydrogen bonding interactions among the amino acid residues Ser 149, Arg 151, Thr 165, Thr 216, Glu 239, Ser 240, Ile 14, as well as Asn 18, Gln 19, Lys 45, Thr 46, Tyr 109, with their respective target proteins of the penicillin-binding protein and dihydrofolate reductase complex. Additionally, we assessed the pharmacokinetic properties of screened PBBCs via SwissADME and AdmetSAR. The findings suggest that β-amyrin, oleanolic acid, kaempferol, quercetin, and friedelin have the potential to inhibit the selected target proteins. In future research, both in vitro and in vivo, experiments will be needed to establish these PBBCs as potent antimicrobial drugs for DRSA.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.