{"title":"MIDAS-2: an enhanced Bayesian platform design for immunotherapy combinations with subgroup efficacy exploration.","authors":"Liwen Su, Xin Chen, Jingyi Zhang, Fangrong Yan","doi":"10.1080/10543406.2023.2292211","DOIUrl":null,"url":null,"abstract":"<p><p>Although immunotherapy combinations have revolutionised cancer treatment, the rapid screening of effective and optimal therapies from large numbers of candidate combinations, as well as exploring subgroup efficacy, remains challenging. This necessitates innovative, integrated, and efficient trial designs. In this study, we extend the MIDAS design to include subgroup exploration and propose an enhanced Bayesian information borrowing platform design called MIDAS-2. MIDAS-2 enables quick and continuous screening of promising combination strategies and exploration of their subgroup effects within a unified platform design framework. We use a regression model to characterize the efficacy pattern in subgroups. Information borrowing is applied through Bayesian hierarchical modelling to improve trial efficiency considering the limited sample size in subgroups. Time trend calibration is also employed to avoid potential baseline drifts. Simulation results demonstrate that MIDAS-2 yields high probabilities for identifying the effective drug combinations as well as promising subgroups, facilitating appropriate selection of the best treatments for each subgroup. The proposed design is robust against small time trend drifts, and the type I error is successfully controlled after calibration when a large drift is expected. Overall, MIDAS-2 provides an adaptive drug screening and subgroup exploring framework to accelerate immunotherapy development in an efficient, accurate, and integrated fashion.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"37-57"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2292211","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Although immunotherapy combinations have revolutionised cancer treatment, the rapid screening of effective and optimal therapies from large numbers of candidate combinations, as well as exploring subgroup efficacy, remains challenging. This necessitates innovative, integrated, and efficient trial designs. In this study, we extend the MIDAS design to include subgroup exploration and propose an enhanced Bayesian information borrowing platform design called MIDAS-2. MIDAS-2 enables quick and continuous screening of promising combination strategies and exploration of their subgroup effects within a unified platform design framework. We use a regression model to characterize the efficacy pattern in subgroups. Information borrowing is applied through Bayesian hierarchical modelling to improve trial efficiency considering the limited sample size in subgroups. Time trend calibration is also employed to avoid potential baseline drifts. Simulation results demonstrate that MIDAS-2 yields high probabilities for identifying the effective drug combinations as well as promising subgroups, facilitating appropriate selection of the best treatments for each subgroup. The proposed design is robust against small time trend drifts, and the type I error is successfully controlled after calibration when a large drift is expected. Overall, MIDAS-2 provides an adaptive drug screening and subgroup exploring framework to accelerate immunotherapy development in an efficient, accurate, and integrated fashion.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.