Birational maps with transcendental dynamical degree

IF 1.5 1区 数学 Q1 MATHEMATICS
Jason P. Bell, Jeffrey Diller, Mattias Jonsson, Holly Krieger
{"title":"Birational maps with transcendental dynamical degree","authors":"Jason P. Bell, Jeffrey Diller, Mattias Jonsson, Holly Krieger","doi":"10.1112/plms.12573","DOIUrl":null,"url":null,"abstract":"We give examples of birational selfmaps of <mjx-container aria-label=\"double struck upper P Superscript d Baseline comma d greater than or slanted equals 3\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/plms12573-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,3,7\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"sequence\" data-semantic-speech=\"double struck upper P Superscript d Baseline comma d greater than or slanted equals 3\" data-semantic-type=\"punctuated\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"8\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,⩾\" data-semantic-parent=\"7\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00246115:media:plms12573:plms12573-math-0001\" display=\"inline\" location=\"graphic/plms12573-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,3,7\" data-semantic-content=\"3\" data-semantic-role=\"sequence\" data-semantic-speech=\"double struck upper P Superscript d Baseline comma d greater than or slanted equals 3\" data-semantic-type=\"punctuated\"><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"8\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-font=\"double-struck\" data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\" mathvariant=\"double-struck\">P</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></msup><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"8\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mrow data-semantic-=\"\" data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic-parent=\"8\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,⩾\" data-semantic-parent=\"7\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\">⩾</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn></mrow></mrow>$\\mathbb {P}^d, d \\geqslant 3$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, whose dynamical degree is a transcendental number. This contradicts a conjecture by Bellon and Viallet. The proof uses a combination of techniques from algebraic dynamics and diophantine approximation.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"16 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12573","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give examples of birational selfmaps of , whose dynamical degree is a transcendental number. This contradicts a conjecture by Bellon and Viallet. The proof uses a combination of techniques from algebraic dynamics and diophantine approximation.
具有超越动态度的双元映射
我们给出了Pd,d⩾3$mathbb {P}^d, d \geqslant 3$的双向自映射的例子,它们的动态度数是一个超越数。这与 Bellon 和 Viallet 的猜想相矛盾。证明结合了代数动力学和二重近似的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信