Row-Hamiltonian Latin squares and Falconer varieties

IF 1.5 1区 数学 Q1 MATHEMATICS
Jack Allsop, Ian M. Wanless
{"title":"Row-Hamiltonian Latin squares and Falconer varieties","authors":"Jack Allsop, Ian M. Wanless","doi":"10.1112/plms.12575","DOIUrl":null,"url":null,"abstract":"A <i>Latin square</i> is a matrix of symbols such that each symbol occurs exactly once in each row and column. A Latin square <math altimg=\"urn:x-wiley:00246115:media:plms12575:plms12575-math-0001\" display=\"inline\" location=\"graphic/plms12575-math-0001.png\">\n<semantics>\n<mi>L</mi>\n$L$</annotation>\n</semantics></math> is <i>row-Hamiltonian</i> if the permutation induced by each pair of distinct rows of <math altimg=\"urn:x-wiley:00246115:media:plms12575:plms12575-math-0002\" display=\"inline\" location=\"graphic/plms12575-math-0002.png\">\n<semantics>\n<mi>L</mi>\n$L$</annotation>\n</semantics></math> is a full cycle permutation. Row-Hamiltonian Latin squares are equivalent to perfect 1-factorisations of complete bipartite graphs. For the first time, we exhibit a family of Latin squares that are row-Hamiltonian and also achieve precisely one of the related properties of being column-Hamiltonian or symbol-Hamiltonian. This family allows us to construct non-trivial, anti-associative, isotopically <math altimg=\"urn:x-wiley:00246115:media:plms12575:plms12575-math-0003\" display=\"inline\" location=\"graphic/plms12575-math-0003.png\">\n<semantics>\n<mi>L</mi>\n$L$</annotation>\n</semantics></math>-closed loop varieties, solving an open problem posed by Falconer in 1970.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"9 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12575","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A Latin square is a matrix of symbols such that each symbol occurs exactly once in each row and column. A Latin square L $L$ is row-Hamiltonian if the permutation induced by each pair of distinct rows of L $L$ is a full cycle permutation. Row-Hamiltonian Latin squares are equivalent to perfect 1-factorisations of complete bipartite graphs. For the first time, we exhibit a family of Latin squares that are row-Hamiltonian and also achieve precisely one of the related properties of being column-Hamiltonian or symbol-Hamiltonian. This family allows us to construct non-trivial, anti-associative, isotopically L $L$ -closed loop varieties, solving an open problem posed by Falconer in 1970.
行-汉密尔顿拉丁方阵和法尔科纳变体
拉丁方阵是一个符号矩阵,每个符号在每一行和每一列都正好出现一次。如果拉丁方阵 L$L$ 的每一对不同行所诱导的排列是全循环排列,那么拉丁方阵 L$L$ 就是行-哈密尔顿排列。行-哈密尔顿拉丁正方形等价于完整双方形图的完全 1 因式分解。我们首次展示了一个行-哈密顿拉丁平方族,它也恰好实现了列-哈密顿或符号-哈密顿的相关性质之一。通过这个族,我们可以构造出非对称、反联立、同素异形的 L$L$ 闭环品种,从而解决了法尔科纳在 1970 年提出的一个未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信