Slowly recurrent Collet–Eckmann maps with non-empty Fatou set

IF 1.5 1区 数学 Q1 MATHEMATICS
Magnus Aspenberg, Mats Bylund, Weiwei Cui
{"title":"Slowly recurrent Collet–Eckmann maps with non-empty Fatou set","authors":"Magnus Aspenberg, Mats Bylund, Weiwei Cui","doi":"10.1112/plms.12574","DOIUrl":null,"url":null,"abstract":"In this paper, we study rational Collet–Eckmann maps for which the Julia set is not the whole sphere and for which the critical points are recurrent at a slow rate. In families where the orders of the critical points are fixed, we prove that such maps are Lebesgue density points of hyperbolic maps. In particular, if all critical points are simple, these maps are Lebesgue density points of hyperbolic maps in the full space of rational maps of any degree <math altimg=\"urn:x-wiley:00246115:media:plms12574:plms12574-math-0001\" display=\"inline\" location=\"graphic/plms12574-math-0001.png\">\n<semantics>\n<mrow>\n<mi>d</mi>\n<mo>⩾</mo>\n<mn>2</mn>\n</mrow>\n$d \\geqslant 2$</annotation>\n</semantics></math>.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"53 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12574","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study rational Collet–Eckmann maps for which the Julia set is not the whole sphere and for which the critical points are recurrent at a slow rate. In families where the orders of the critical points are fixed, we prove that such maps are Lebesgue density points of hyperbolic maps. In particular, if all critical points are simple, these maps are Lebesgue density points of hyperbolic maps in the full space of rational maps of any degree d 2 $d \geqslant 2$ .
具有非空 Fatou 集的缓慢递归 Collet-Eckmann 地图
在本文中,我们研究了有理 Collet-Eckmann 映射,对于这些映射,Julia 集不是整个球面,而且临界点以缓慢的速度反复出现。在临界点阶数固定的族中,我们证明了这类映射是双曲映射的勒贝格密度点。特别是,如果所有临界点都是简单的,这些映射就是任意度 d⩾2$d \geqslant 2$ 的有理映射全空间中双曲映射的 Lebesgue 密度点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信