Dixon's asymptotic without the classification of finite simple groups

Sean Eberhard
{"title":"Dixon's asymptotic without the classification of finite simple groups","authors":"Sean Eberhard","doi":"10.1002/rsa.21205","DOIUrl":null,"url":null,"abstract":"Without using the classification of finite simple groups (CFSG), we show that the probability that two random elements of <mjx-container aria-label=\"Menu available. Press control and space , or space\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21205-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript n\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.032em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21205:rsa21205-math-0001\" display=\"inline\" location=\"graphic/rsa21205-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript n\" data-semantic-type=\"subscript\"><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">S</mi></mrow><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi></mrow></msub></mrow>$$ {S}_n $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> generate a primitive group smaller than <mjx-container aria-label=\"Menu available. Press control and space , or space\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21205-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A Subscript n\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21205:rsa21205-math-0002\" display=\"inline\" location=\"graphic/rsa21205-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A Subscript n\" data-semantic-type=\"subscript\"><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">A</mi></mrow><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi></mrow></msub></mrow>$$ {A}_n $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is at most <mjx-container aria-label=\"Menu available. Press control and space , or space\" ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21205-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,23\" data-semantic-content=\"24,0\" data-semantic- data-semantic-role=\"prefix function\" data-semantic-speech=\"exp left parenthesis minus c left parenthesis n log n right parenthesis Superscript 1 divided by 2 Baseline right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"25\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"25\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"22\" data-semantic-content=\"1,19\" data-semantic- data-semantic-parent=\"25\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"23\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"21\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"23\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"22\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"3,18\" data-semantic-content=\"20\" data-semantic- data-semantic-parent=\"22\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"21\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"13,17\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"leftright\" data-semantic-type=\"superscript\"><mjx-mrow data-semantic-children=\"12\" data-semantic-content=\"4,8\" data-semantic- data-semantic-parent=\"18\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,10\" data-semantic-content=\"11\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"6,7\" data-semantic-content=\"9,6\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"10\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"10\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: 0.477em;\"><mjx-mrow data-semantic-children=\"14,16\" data-semantic-content=\"15\" data-semantic- data-semantic-parent=\"18\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"17\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"23\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21205:rsa21205-math-0003\" display=\"inline\" location=\"graphic/rsa21205-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,23\" data-semantic-content=\"24,0\" data-semantic-role=\"prefix function\" data-semantic-speech=\"exp left parenthesis minus c left parenthesis n log n right parenthesis Superscript 1 divided by 2 Baseline right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"25\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\">exp</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"25\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"22\" data-semantic-content=\"1,19\" data-semantic-parent=\"25\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"23\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"true\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"21\" data-semantic-content=\"2\" data-semantic-parent=\"23\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"22\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" form=\"prefix\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"3,18\" data-semantic-content=\"20\" data-semantic-parent=\"22\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"21\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">c</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"21\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><msup data-semantic-=\"\" data-semantic-children=\"13,17\" data-semantic-parent=\"21\" data-semantic-role=\"leftright\" data-semantic-type=\"superscript\"><mrow data-semantic-=\"\" data-semantic-children=\"12\" data-semantic-content=\"4,8\" data-semantic-parent=\"18\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"true\">(</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,10\" data-semantic-content=\"11\" data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"6,7\" data-semantic-content=\"9,6\" data-semantic-parent=\"12\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"10\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\">log</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"10\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"true\">)</mo></mrow><mrow data-semantic-=\"\" data-semantic-children=\"14,16\" data-semantic-content=\"15\" data-semantic-parent=\"18\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"17\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"17\" data-semantic-role=\"division\" data-semantic-type=\"operator\" stretchy=\"false\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"17\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow></msup></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"23\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"true\">)</mo></mrow></mrow>$$ \\exp \\left(-c{\\left(n\\log n\\right)}^{1/2}\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. As a corollary we get Dixon's asymptotic expansion","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Without using the classification of finite simple groups (CFSG), we show that the probability that two random elements of generate a primitive group smaller than is at most . As a corollary we get Dixon's asymptotic expansion
无有限简单群分类的狄克逊渐近论
在不使用有限简单群(CFSG)分类的情况下,我们证明 Sn$$ {S}_n $$ 的两个随机元素产生一个小于 An$$ {A}_n $$ 的基元群的概率最多为 exp(-c(nlogn)1/2)$$ \exp \left(-c{left(n\log n\right)}^{1/2}\right) $$。作为推论,我们可以得到狄克逊的渐近展开式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信