Building Domain-Specific Machine Learning Workflows: A Conceptual Framework for the State-of-the-Practice

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Bentley James Oakes, Michalis Famelis, Houari Sahraoui
{"title":"Building Domain-Specific Machine Learning Workflows: A Conceptual Framework for the State-of-the-Practice","authors":"Bentley James Oakes, Michalis Famelis, Houari Sahraoui","doi":"10.1145/3638243","DOIUrl":null,"url":null,"abstract":"<p>Domain experts are increasingly employing machine learning to solve their domain-specific problems. This article presents to software engineering researchers the six key challenges that a domain expert faces in addressing their problem with a computational workflow, and the underlying executable implementation. These challenges arise out of our conceptual framework which presents the “route” of transformations that a domain expert may choose to take while developing their solution. </p><p>To ground our conceptual framework in the state-of-the-practice, this article discusses a selection of available textual and graphical workflow systems and their support for the transformations described in our framework. Example studies from the literature in various domains are also examined to highlight the tools used by the domain experts as well as a classification of the domain-specificity and machine learning usage of their problem, workflow, and implementation. </p><p>The state-of-the-practice informs our discussion of the six key challenges, where we identify which challenges and transformations are not sufficiently addressed by available tools. We also suggest possible research directions for software engineering researchers to increase the automation of these tools and disseminate best-practice techniques between software engineering and various scientific domains.</p>","PeriodicalId":50933,"journal":{"name":"ACM Transactions on Software Engineering and Methodology","volume":"2017 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638243","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Domain experts are increasingly employing machine learning to solve their domain-specific problems. This article presents to software engineering researchers the six key challenges that a domain expert faces in addressing their problem with a computational workflow, and the underlying executable implementation. These challenges arise out of our conceptual framework which presents the “route” of transformations that a domain expert may choose to take while developing their solution.

To ground our conceptual framework in the state-of-the-practice, this article discusses a selection of available textual and graphical workflow systems and their support for the transformations described in our framework. Example studies from the literature in various domains are also examined to highlight the tools used by the domain experts as well as a classification of the domain-specificity and machine learning usage of their problem, workflow, and implementation.

The state-of-the-practice informs our discussion of the six key challenges, where we identify which challenges and transformations are not sufficiently addressed by available tools. We also suggest possible research directions for software engineering researchers to increase the automation of these tools and disseminate best-practice techniques between software engineering and various scientific domains.

构建特定领域的机器学习工作流:实践现状的概念框架
领域专家越来越多地使用机器学习来解决其特定领域的问题。本文向软件工程研究人员介绍了领域专家在使用计算工作流和底层可执行实现解决其问题时所面临的六大挑战。这些挑战源于我们的概念框架,该框架提出了领域专家在开发解决方案时可能选择的转换 "路线"。为了将我们的概念框架建立在实践基础上,本文讨论了一些可用的文本和图形工作流系统,以及它们对我们框架中描述的转换的支持。本文还研究了不同领域文献中的示例研究,以突出领域专家使用的工具,并对其问题、工作流程和实施的领域特定性和机器学习使用情况进行了分类。实践状况为我们讨论六大挑战提供了参考,我们确定了哪些挑战和转换是现有工具无法充分解决的。我们还为软件工程研究人员提出了可能的研究方向,以提高这些工具的自动化程度,并在软件工程和各种科学领域之间传播最佳实践技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Software Engineering and Methodology
ACM Transactions on Software Engineering and Methodology 工程技术-计算机:软件工程
CiteScore
6.30
自引率
4.50%
发文量
164
审稿时长
>12 weeks
期刊介绍: Designing and building a large, complex software system is a tremendous challenge. ACM Transactions on Software Engineering and Methodology (TOSEM) publishes papers on all aspects of that challenge: specification, design, development and maintenance. It covers tools and methodologies, languages, data structures, and algorithms. TOSEM also reports on successful efforts, noting practical lessons that can be scaled and transferred to other projects, and often looks at applications of innovative technologies. The tone is scholarly but readable; the content is worthy of study; the presentation is effective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信