Linear homeomorphisms of function spaces and the position of a space in its compactification

Mikołaj Krupski
{"title":"Linear homeomorphisms of function spaces and the position of a space in its compactification","authors":"Mikołaj Krupski","doi":"10.4153/s0008414x23000779","DOIUrl":null,"url":null,"abstract":"<p>An old question of Arhangel’skii asks if the Menger property of a Tychonoff space <span>X</span> is preserved by homeomorphisms of the space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220142853673-0028:S0008414X23000779:S0008414X23000779_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C_p(X)$</span></span></img></span></span> of continuous real-valued functions on <span>X</span> endowed with the pointwise topology. We provide affirmative answer in the case of linear homeomorphisms. To this end, we develop a method of studying invariants of linear homeomorphisms of function spaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220142853673-0028:S0008414X23000779:S0008414X23000779_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$C_p(X)$</span></span></img></span></span> by looking at the way <span>X</span> is positioned in its (Čech–Stone) compactification.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An old question of Arhangel’skii asks if the Menger property of a Tychonoff space X is preserved by homeomorphisms of the space Abstract Image$C_p(X)$ of continuous real-valued functions on X endowed with the pointwise topology. We provide affirmative answer in the case of linear homeomorphisms. To this end, we develop a method of studying invariants of linear homeomorphisms of function spaces Abstract Image$C_p(X)$ by looking at the way X is positioned in its (Čech–Stone) compactification.

函数空间的线性同构和空间在其紧凑化中的位置
阿尔汉格尔斯基(Arhangel'skii)的一个老问题是:X 上连续实值函数的空间 $C_p(X)$ 的同态性是否会保留 X 的门格尔性质?在线性同构的情况下,我们给出了肯定的答案。为此,我们开发了一种研究函数空间 $C_p(X)$ 的线性同构不变式的方法,即研究 X 在其(切赫-斯通)紧凑化中的定位方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信