Random walk with restart on hypergraphs: fast computation and an application to anomaly detection

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jaewan Chun, Geon Lee, Kijung Shin, Jinhong Jung
{"title":"Random walk with restart on hypergraphs: fast computation and an application to anomaly detection","authors":"Jaewan Chun, Geon Lee, Kijung Shin, Jinhong Jung","doi":"10.1007/s10618-023-00995-9","DOIUrl":null,"url":null,"abstract":"<p>Random walk with restart (RWR) is a widely-used measure of node similarity in graphs, and it has proved useful for ranking, community detection, link prediction, anomaly detection, etc. Since RWR is typically required to be computed separately for a larger number of query nodes or even for all nodes, fast computation of it is indispensable. However, for hypergraphs, the fast computation of RWR has been unexplored, despite its great potential. In this paper, we propose <span>ARCHER</span>, a fast computation framework for RWR on hypergraphs. Specifically, we first formally define RWR on hypergraphs, and then we propose two computation methods that compose <span>ARCHER</span>. Since the two methods are complementary (i.e., offering relative advantages on different hypergraphs), we also develop a method for automatic selection between them, which takes a very short time compared to the total running time. Through our extensive experiments on 18 real-world hypergraphs, we demonstrate (a) the speed and space efficiency of <span>ARCHER</span>, (b) the complementary nature of the two computation methods composing <span>ARCHER</span>, (c) the accuracy of its automatic selection method, and (d) its successful application to anomaly detection on hypergraphs.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"69 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-023-00995-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Random walk with restart (RWR) is a widely-used measure of node similarity in graphs, and it has proved useful for ranking, community detection, link prediction, anomaly detection, etc. Since RWR is typically required to be computed separately for a larger number of query nodes or even for all nodes, fast computation of it is indispensable. However, for hypergraphs, the fast computation of RWR has been unexplored, despite its great potential. In this paper, we propose ARCHER, a fast computation framework for RWR on hypergraphs. Specifically, we first formally define RWR on hypergraphs, and then we propose two computation methods that compose ARCHER. Since the two methods are complementary (i.e., offering relative advantages on different hypergraphs), we also develop a method for automatic selection between them, which takes a very short time compared to the total running time. Through our extensive experiments on 18 real-world hypergraphs, we demonstrate (a) the speed and space efficiency of ARCHER, (b) the complementary nature of the two computation methods composing ARCHER, (c) the accuracy of its automatic selection method, and (d) its successful application to anomaly detection on hypergraphs.

Abstract Image

超图上重新开始的随机行走:快速计算及异常检测应用
带重启的随机漫步(RWR)是一种广泛使用的图中节点相似性度量方法,已被证明可用于排名、群落检测、链接预测、异常检测等。由于 RWR 通常需要对大量查询节点甚至所有节点分别计算,因此快速计算 RWR 是必不可少的。然而,对于超图而言,尽管 RWR 具有巨大的潜力,但其快速计算却一直未被探索。本文提出了超图上 RWR 的快速计算框架 ARCHER。具体来说,我们首先正式定义了超图上的 RWR,然后提出了组成 ARCHER 的两种计算方法。由于这两种方法是互补的(即在不同的超图上具有相对优势),我们还开发了一种在它们之间进行自动选择的方法,与总运行时间相比,这种方法只需要很短的时间。通过在 18 个真实超图上的大量实验,我们证明了(a)ARCHER 的速度和空间效率,(b)组成 ARCHER 的两种计算方法的互补性,(c)其自动选择方法的准确性,以及(d)其在超图异常检测上的成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信