Optoelectronics and thermoelectric performances in CuX (X = F, Cl, Br, and I)

Torkia Ghellab, Zoulikha Charifi, Hakim Baaziz, Nadjia Latelli
{"title":"Optoelectronics and thermoelectric performances in CuX (X = F, Cl, Br, and I)","authors":"Torkia Ghellab, Zoulikha Charifi, Hakim Baaziz, Nadjia Latelli","doi":"10.1515/zna-2023-0237","DOIUrl":null,"url":null,"abstract":"The current study focused on examining the structural, mechanical, and optoelectronic properties of CuF, CuCl, CuBr, and CuI by the utilisation of the FP-LAPW method. The calculations reveal that GGA is a better fit than LDA for evaluating structural characteristics, including lattice parameters and bulk modulus. The examination of the band structure reveals that CuF exhibits metallic behaviour, whilst the compounds CuCl, CuBr, and CuI exhibit semiconducting properties, characterised by direct fundamental gaps (Γ → Γ) of 0.516, 0.425, and 1.049 eV, respectively. The peak absorption values for CuCl, CuBr, and CuI are located at 10.68 eV, 9.53 eV, and 7.68 eV, respectively. All materials have ultraviolet absorption peaks. Therefore, the compounds demonstrate substantial absorption in the low- and mid-ultraviolet wavelengths. The four compounds exhibit anisotropic properties, possess ductility, and demonstrate mechanical stability. These entities possess the ability to endure a wide range of temperatures. The thermoelectric performance of the three semiconductors, CuCl, CuBr, and CuI, was investigated. At 300 K, the <jats:italic>k</jats:italic> <jats:sub> <jats:italic>L</jats:italic> </jats:sub> values for CuBr, CuCl, and CuI, are 2.89 W/mK, 3.98 W/mK, and 3.56 W/mK, and the Gruneisen values are as follows: <jats:italic>γ</jats:italic> (CuCl) = 2.4087, <jats:italic>γ</jats:italic> (CuBr) = 2.4747, and <jats:italic>γ</jats:italic> (CuI) = 2.1962. At a temperature of 600 K, the <jats:italic>k</jats:italic> <jats:sub> <jats:italic>T</jats:italic> </jats:sub> value is found to be relatively low. The measured values for the <jats:italic>k</jats:italic> <jats:sub> <jats:italic>T</jats:italic> </jats:sub> of CuCl, CuBr, and CuI are around 1.7818 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>, 1.5109 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>, and 2.8580 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>, respectively. At a temperature of 300 K, the Seebeck coefficients (<jats:italic>S</jats:italic>) for CuCl, CuBr, and CuI are measured to be 1192.7964 μV/K, 1170.5882 μV/K, and −65.7454 μV/K, respectively. At a temperature of 800 K, the <jats:italic>p</jats:italic>-type compound CuBr exhibits a maximum figure of merit (ZT) value of 0.6691, corresponding to a charge carrier concentration of 31.7926 × 10<jats:sup>20</jats:sup> cm<jats:sup>3</jats:sup>. The CuCl and CuI compounds exhibit the maximum ZT values of 0.52043 and 0.5609, respectively. In order to achieve the desired results, it is necessary to decrease the charge carrier concentration in CuCl to <jats:italic>n</jats:italic> = 0.514 × 10<jats:sup>22</jats:sup> cm<jats:sup>−3</jats:sup> and increase the charge carrier concentration in CuI to <jats:italic>n</jats:italic> = 9.686 × 10<jats:sup>22</jats:sup> cm<jats:sup>−3</jats:sup>; alternatively, the chemical potentials should be decreased by 0.2563 Ryd and 0.3974 Ryd, respectively.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"252 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current study focused on examining the structural, mechanical, and optoelectronic properties of CuF, CuCl, CuBr, and CuI by the utilisation of the FP-LAPW method. The calculations reveal that GGA is a better fit than LDA for evaluating structural characteristics, including lattice parameters and bulk modulus. The examination of the band structure reveals that CuF exhibits metallic behaviour, whilst the compounds CuCl, CuBr, and CuI exhibit semiconducting properties, characterised by direct fundamental gaps (Γ → Γ) of 0.516, 0.425, and 1.049 eV, respectively. The peak absorption values for CuCl, CuBr, and CuI are located at 10.68 eV, 9.53 eV, and 7.68 eV, respectively. All materials have ultraviolet absorption peaks. Therefore, the compounds demonstrate substantial absorption in the low- and mid-ultraviolet wavelengths. The four compounds exhibit anisotropic properties, possess ductility, and demonstrate mechanical stability. These entities possess the ability to endure a wide range of temperatures. The thermoelectric performance of the three semiconductors, CuCl, CuBr, and CuI, was investigated. At 300 K, the k L values for CuBr, CuCl, and CuI, are 2.89 W/mK, 3.98 W/mK, and 3.56 W/mK, and the Gruneisen values are as follows: γ (CuCl) = 2.4087, γ (CuBr) = 2.4747, and γ (CuI) = 2.1962. At a temperature of 600 K, the k T value is found to be relatively low. The measured values for the k T of CuCl, CuBr, and CuI are around 1.7818 W m−1 K−1, 1.5109 W m−1 K−1, and 2.8580 W m−1 K−1, respectively. At a temperature of 300 K, the Seebeck coefficients (S) for CuCl, CuBr, and CuI are measured to be 1192.7964 μV/K, 1170.5882 μV/K, and −65.7454 μV/K, respectively. At a temperature of 800 K, the p-type compound CuBr exhibits a maximum figure of merit (ZT) value of 0.6691, corresponding to a charge carrier concentration of 31.7926 × 1020 cm3. The CuCl and CuI compounds exhibit the maximum ZT values of 0.52043 and 0.5609, respectively. In order to achieve the desired results, it is necessary to decrease the charge carrier concentration in CuCl to n = 0.514 × 1022 cm−3 and increase the charge carrier concentration in CuI to n = 9.686 × 1022 cm−3; alternatively, the chemical potentials should be decreased by 0.2563 Ryd and 0.3974 Ryd, respectively.
CuX(X = F、Cl、Br 和 I)的光电和热电性能
目前的研究重点是利用 FP-LAPW 方法研究 CuF、CuCl、CuBr 和 CuI 的结构、机械和光电特性。计算结果表明,在评估包括晶格参数和体积模量在内的结构特性时,GGA 比 LDA 的拟合效果更好。对能带结构的研究表明,CuF 具有金属特性,而化合物 CuCl、CuBr 和 CuI 则具有半导体特性,其直接基隙 (Γ → Γ) 分别为 0.516、0.425 和 1.049 eV。CuCl、CuBr 和 CuI 的吸收峰值分别位于 10.68 eV、9.53 eV 和 7.68 eV。所有材料都有紫外线吸收峰。因此,这些化合物在低紫外和中紫外波段有大量吸收。这四种化合物具有各向异性、延展性和机械稳定性。这些实体有能力承受很宽的温度范围。我们对 CuCl、CuBr 和 CuI 这三种半导体的热电性能进行了研究。在 300 K 时,CuBr、CuCl 和 CuI 的 k L 值分别为 2.89 W/mK、3.98 W/mK 和 3.56 W/mK,格鲁尼森值如下:γ(CuCl)= 2.4087,γ(CuBr)= 2.4747,γ(CuI)= 2.1962。在 600 K 的温度下,k T 值相对较低。CuCl、CuBr 和 CuI 的 k T 测量值分别约为 1.7818 W m-1 K-1、1.5109 W m-1 K-1 和 2.8580 W m-1 K-1。在温度为 300 K 时,测得 CuCl、CuBr 和 CuI 的塞贝克系数 (S) 分别为 1192.7964 μV/K、1170.5882 μV/K 和 -65.7454 μV/K。在 800 K 的温度下,p 型化合物 CuBr 的最大优点系数 (ZT) 值为 0.6691,相当于 31.7926 × 1020 cm3 的电荷载流子浓度。CuCl 和 CuI 化合物的最大 ZT 值分别为 0.52043 和 0.5609。为了达到理想的效果,有必要将 CuCl 中的电荷载流子浓度降低到 n = 0.514 × 1022 cm-3,将 CuI 中的电荷载流子浓度提高到 n = 9.686 × 1022 cm-3;或者将化学势分别降低 0.2563 Ryd 和 0.3974 Ryd。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信