Inferring the dynamics of ionic currents from recursive piecewise data assimilation of approximate neuron models

Stephen A. Wells, Joseph D. Taylor, Paul G. Morris, Alain Nogaret
{"title":"Inferring the dynamics of ionic currents from recursive piecewise data assimilation of approximate neuron models","authors":"Stephen A. Wells, Joseph D. Taylor, Paul G. Morris, Alain Nogaret","doi":"arxiv-2312.12888","DOIUrl":null,"url":null,"abstract":"We construct neuron models from data by transferring information from an\nobserved time series to the state variables and parameters of Hodgkin-Huxley\nmodels. When the learning period completes, the model will predict additional\nobservations and its parameters uniquely characterise the complement of ion\nchannels. However, the assimilation of biological data, as opposed to model\ndata, is complicated by the lack of knowledge of the true neuron equations.\nReliance on guessed conductance models is plagued with multi-valued parameter\nsolutions. Here, we report on the distributions of parameters and currents\npredicted with intentionally erroneous models, over-specified models, and an\napproximate model fitting hippocampal neuron data. We introduce a recursive\npiecewise data assimilation (RPDA) algorithm that converges with near-perfect\nreliability when the model is known. When the model is unknown, we show model\nerror introduces correlations between certain parameters. The ionic currents\nreconstructed from these parameters are excellent predictors of true currents\nand carry a higher degree of confidence, >95.5%, than underlying parameters,\n>53%. Unexpressed ionic currents are correctly filtered out even in the\npresence of mild model error. When the model is unknown, the covariance\neigenvalues of parameter estimates are found to be a good gauge of model error.\nOur results suggest that biological information may be retrieved from data by\nfocussing on current estimates rather than parameters.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.12888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct neuron models from data by transferring information from an observed time series to the state variables and parameters of Hodgkin-Huxley models. When the learning period completes, the model will predict additional observations and its parameters uniquely characterise the complement of ion channels. However, the assimilation of biological data, as opposed to model data, is complicated by the lack of knowledge of the true neuron equations. Reliance on guessed conductance models is plagued with multi-valued parameter solutions. Here, we report on the distributions of parameters and currents predicted with intentionally erroneous models, over-specified models, and an approximate model fitting hippocampal neuron data. We introduce a recursive piecewise data assimilation (RPDA) algorithm that converges with near-perfect reliability when the model is known. When the model is unknown, we show model error introduces correlations between certain parameters. The ionic currents reconstructed from these parameters are excellent predictors of true currents and carry a higher degree of confidence, >95.5%, than underlying parameters, >53%. Unexpressed ionic currents are correctly filtered out even in the presence of mild model error. When the model is unknown, the covariance eigenvalues of parameter estimates are found to be a good gauge of model error. Our results suggest that biological information may be retrieved from data by focussing on current estimates rather than parameters.
从近似神经元模型的递归分片数据同化中推断离子电流的动态变化
我们将观测到的时间序列信息转移到霍奇金-赫胥黎模型的状态变量和参数中,从而根据数据构建神经元模型。当学习期结束时,模型将预测更多的观测数据,其参数将唯一地描述离子通道的互补性。然而,与模型数据相比,生物数据的同化因缺乏对真实神经元方程的了解而变得复杂。在这里,我们报告了用故意错误的模型、过度指定的模型和拟合海马神经元数据的近似模型预测的参数和电流分布。我们介绍了一种递归片断数据同化(RPDA)算法,当模型已知时,该算法以近乎完美的可靠性收敛。当模型未知时,我们发现模型错误会引入某些参数之间的相关性。根据这些参数重建的离子电流可以很好地预测真实电流,其置信度大于 95.5%,高于基础参数的置信度(大于 53%)。即使存在轻微的模型误差,也能正确过滤出未表达的离子电流。我们的研究结果表明,通过关注电流估计值而不是参数,可以从数据中获取生物学信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信