Seungwon Lee, Elliot A Martin, Jie Pan, Cathy A Eastwood, Danielle A Southern, David J T Campbell, Abdel Aziz Shaheen, Hude Quan, Sonia Butalia
{"title":"Exploring the reliability of inpatient EMR algorithms for diabetes identification","authors":"Seungwon Lee, Elliot A Martin, Jie Pan, Cathy A Eastwood, Danielle A Southern, David J T Campbell, Abdel Aziz Shaheen, Hude Quan, Sonia Butalia","doi":"10.1136/bmjhci-2023-100894","DOIUrl":null,"url":null,"abstract":"Introduction Accurate identification of medical conditions within a real-time inpatient setting is crucial for health systems. Current inpatient comorbidity algorithms rely on integrating various sources of administrative data, but at times, there is a considerable lag in obtaining and linking these data. Our study objective was to develop electronic medical records (EMR) data-based inpatient diabetes phenotyping algorithms. Materials and methods A chart review on 3040 individuals was completed, and 583 had diabetes. We linked EMR data on these individuals to the International Classification of Disease (ICD) administrative databases. The following EMR-data-based diabetes algorithms were developed: (1) laboratory data, (2) medication data, (3) laboratory and medications data, (4) diabetes concept keywords and (5) diabetes free-text algorithm. Combined algorithms used or statements between the above algorithms. Algorithm performances were measured using chart review as a gold standard. We determined the best-performing algorithm as the one that showed the high performance of sensitivity (SN), and positive predictive value (PPV). Results The algorithms tested generally performed well: ICD-coded data, SN 0.84, specificity (SP) 0.98, PPV 0.93 and negative predictive value (NPV) 0.96; medication and laboratory algorithm, SN 0.90, SP 0.95, PPV 0.80 and NPV 0.97; all document types algorithm, SN 0.95, SP 0.98, PPV 0.94 and NPV 0.99. Discussion Free-text data-based diabetes algorithm can yield comparable or superior performance to a commonly used ICD-coded algorithm and could supplement existing methods. These types of inpatient EMR-based algorithms for case identification may become a key method for timely resource planning and care delivery. Data may be obtained from a third party and are not publicly available. Restrictions apply to the availability of these data. Data were obtained from Alberta Health Services and are available with the permission of Alberta Health Services.","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"6 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2023-100894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction Accurate identification of medical conditions within a real-time inpatient setting is crucial for health systems. Current inpatient comorbidity algorithms rely on integrating various sources of administrative data, but at times, there is a considerable lag in obtaining and linking these data. Our study objective was to develop electronic medical records (EMR) data-based inpatient diabetes phenotyping algorithms. Materials and methods A chart review on 3040 individuals was completed, and 583 had diabetes. We linked EMR data on these individuals to the International Classification of Disease (ICD) administrative databases. The following EMR-data-based diabetes algorithms were developed: (1) laboratory data, (2) medication data, (3) laboratory and medications data, (4) diabetes concept keywords and (5) diabetes free-text algorithm. Combined algorithms used or statements between the above algorithms. Algorithm performances were measured using chart review as a gold standard. We determined the best-performing algorithm as the one that showed the high performance of sensitivity (SN), and positive predictive value (PPV). Results The algorithms tested generally performed well: ICD-coded data, SN 0.84, specificity (SP) 0.98, PPV 0.93 and negative predictive value (NPV) 0.96; medication and laboratory algorithm, SN 0.90, SP 0.95, PPV 0.80 and NPV 0.97; all document types algorithm, SN 0.95, SP 0.98, PPV 0.94 and NPV 0.99. Discussion Free-text data-based diabetes algorithm can yield comparable or superior performance to a commonly used ICD-coded algorithm and could supplement existing methods. These types of inpatient EMR-based algorithms for case identification may become a key method for timely resource planning and care delivery. Data may be obtained from a third party and are not publicly available. Restrictions apply to the availability of these data. Data were obtained from Alberta Health Services and are available with the permission of Alberta Health Services.