Nonlinear Effects and Run-up of Coastal Waves Generated by Billiards with Semi-rigid Walls in the Framework of Shallow Water Theory

Pub Date : 2023-12-20 DOI:10.1134/s0081543823040090
S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova
{"title":"Nonlinear Effects and Run-up of Coastal Waves Generated by Billiards with Semi-rigid Walls in the Framework of Shallow Water Theory","authors":"S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova","doi":"10.1134/s0081543823040090","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> By coastal waves we mean time-periodic or nearly time-periodic gravity waves on water in a basin of depth <span>\\(D(x)\\)</span>, <span>\\(x=(x_1,x_2)\\)</span>, that are localized in the vicinity of the coastline <span>\\(\\Gamma^0=\\{D(x)=0\\}\\)</span>. In this paper, for the system of nonlinear shallow water equations, we construct asymptotic solutions corresponding to coastal waves in two specific examples. The solutions are presented in the form of parametrically defined functions corresponding to asymptotic solutions of the linearized system, which, in turn, are related to the asymptotic eigenfunctions of the operator <span>\\(-\\nabla\\cdot (g D(x)\\nabla)\\)</span> that are generated by billiards with semi-rigid walls. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823040090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By coastal waves we mean time-periodic or nearly time-periodic gravity waves on water in a basin of depth \(D(x)\), \(x=(x_1,x_2)\), that are localized in the vicinity of the coastline \(\Gamma^0=\{D(x)=0\}\). In this paper, for the system of nonlinear shallow water equations, we construct asymptotic solutions corresponding to coastal waves in two specific examples. The solutions are presented in the form of parametrically defined functions corresponding to asymptotic solutions of the linearized system, which, in turn, are related to the asymptotic eigenfunctions of the operator \(-\nabla\cdot (g D(x)\nabla)\) that are generated by billiards with semi-rigid walls.

Abstract Image

分享
查看原文
浅水理论框架下带有半刚性壁的台球产生的海岸波的非线性效应和上升趋势
Abstract by coastal waves we mean time-periodic or nearly time-periodic gravity waves on water in a basin of depth \(D(x)\), \(x=(x_1,x_2)\), that are localized in the vicinity of the coastline \(\Gamma^0=\{D(x)=0\}\)。本文针对非线性浅水方程系统,在两个具体例子中构建了与海岸波相对应的渐近解。这些解以参数定义函数的形式呈现,这些函数与线性化系统的渐近解相对应,而线性化系统的渐近解又与具有半刚性壁的台球产生的算子 \(-\nabla\cdot (g D(x)\nabla)\) 的渐近特征函数相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信