On Dually-CPT and Strongly-CPT Posets

Order Pub Date : 2023-12-20 DOI:10.1007/s11083-023-09656-4
Liliana Alcón, Martin Charles Golumbic, Noemí Gudiño, Marisa Gutierrez, Vincent Limouzy
{"title":"On Dually-CPT and Strongly-CPT Posets","authors":"Liliana Alcón, Martin Charles Golumbic, Noemí Gudiño, Marisa Gutierrez, Vincent Limouzy","doi":"10.1007/s11083-023-09656-4","DOIUrl":null,"url":null,"abstract":"<p>A poset is a containment of paths in a tree (CPT) if it admits a representation by containment where each element of the poset is represented by a path in a tree and two elements are comparable in the poset if the corresponding paths are related by the inclusion relation. Recently Alcón, Gudiño and Gutierrez (Discrete Applied Math. <b>245</b>, 139–147, 2018) introduced proper subclasses of CPT posets, namely dually-CPT, and strongly-CPT (or strong-CPT). A poset <span>\\({\\textbf{P}}\\)</span> is dually-CPT, if <span>\\({\\textbf{P}}\\)</span> and its dual <span>\\({\\textbf{P}}^{d}\\)</span> both admit a CPT-representation. A poset <span>\\({\\textbf{P}}\\)</span> is strongly-CPT, if <span>\\({\\textbf{P}}\\)</span> and all the posets that share the same underlying comparability graph admit a CPT-representation. Where as the inclusion between dually-CPT and CPT was known to be strict. It was raised as an open question by Alcón, Gudiño and Gutierrez (Discrete Applied Math. <b>245</b>, 139–147, 2018) whether strongly-CPT was a strict subclass of dually-CPT. We provide a proof that both classes actually coincide.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-023-09656-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A poset is a containment of paths in a tree (CPT) if it admits a representation by containment where each element of the poset is represented by a path in a tree and two elements are comparable in the poset if the corresponding paths are related by the inclusion relation. Recently Alcón, Gudiño and Gutierrez (Discrete Applied Math. 245, 139–147, 2018) introduced proper subclasses of CPT posets, namely dually-CPT, and strongly-CPT (or strong-CPT). A poset \({\textbf{P}}\) is dually-CPT, if \({\textbf{P}}\) and its dual \({\textbf{P}}^{d}\) both admit a CPT-representation. A poset \({\textbf{P}}\) is strongly-CPT, if \({\textbf{P}}\) and all the posets that share the same underlying comparability graph admit a CPT-representation. Where as the inclusion between dually-CPT and CPT was known to be strict. It was raised as an open question by Alcón, Gudiño and Gutierrez (Discrete Applied Math. 245, 139–147, 2018) whether strongly-CPT was a strict subclass of dually-CPT. We provide a proof that both classes actually coincide.

关于双 CPT 和强 CPT Posets
如果一个正集允许一种包含表示法,即正集的每个元素都由树中的一条路径表示,并且如果相应的路径通过包含关系相关,则两个元素在正集中是可比的,那么这个正集就是树中路径的包含(CPT)。最近,Alcón、Gudiño 和 Gutierrez(《离散应用数学》,245,139-147,2018 年)引入了 CPT 正集的适当子类,即双 CPT 和强 CPT(或强 CPT)。如果\({\textbf{P}}\)及其对偶\({\textbf{P}}^{d}\)都承认一个 CPT 表示,那么一个实集\({\textbf{P}}\)就是双 CPT。如果 \({\textbf{P}}\)和所有共享相同底层可比性图的poset都接受CPT表示,那么poset \({\textbf{P}}\)就是强CPT。众所周知,双CPT与CPT之间的包含是严格的。Alcón、Gudiño 和 Gutierrez(Discrete Applied Math. 245, 139-147, 2018)提出了一个开放性问题:强-CPT 是否是二重-CPT 的严格子类。我们证明了这两个类实际上是重合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信