{"title":"UG-schematic Annotation for Event Nominals: A Case Study in Mandarin Chinese","authors":"Wenxi Li, Guy Emerson, Yutong Zhang, Weiwei Sun","doi":"10.1162/coli_a_00504","DOIUrl":null,"url":null,"abstract":"Divergence of languages observed at the surface level is a major challenge encountered by multilingual data representation, especially when typologically distant languages are involved. Drawing inspirations from a formalist Chomskyan perspective towards language universals, Universal Grammar (UG), this article employs deductively pre-defined universals to analyse a multilingually heterogeneous phenomenon, event nominals. In this way, deeper universality of event nominals beneath their huge divergence in different languages is uncovered, which empowers us to break barriers between languages and thus extend insights from some synthetic languages to a non-inflectional language, Mandarin Chinese. Our empirical investigation also demonstrates this UG-inspired schema is effective: with its assistance, the inter-annotator agreement (IAA) for identifying event nominals in Mandarin grows from 88.02% to 94.99%, and automatic detection of event-reading nominalizations on the newly-established data achieves an accuracy of 94.76% and an F1 score of 91.3%, which are significantly surpass those achieved on the pre-existing resource by 9.8% and 5.2% respectively. Our systematic analysis also sheds light on nominal semantic role labelling (SRL). By providing a clear definition and classification on arguments of event nominal, the IAA of this task significantly increases from 90.46% to 98.04%.","PeriodicalId":49089,"journal":{"name":"Computational Linguistics","volume":"3 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00504","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Divergence of languages observed at the surface level is a major challenge encountered by multilingual data representation, especially when typologically distant languages are involved. Drawing inspirations from a formalist Chomskyan perspective towards language universals, Universal Grammar (UG), this article employs deductively pre-defined universals to analyse a multilingually heterogeneous phenomenon, event nominals. In this way, deeper universality of event nominals beneath their huge divergence in different languages is uncovered, which empowers us to break barriers between languages and thus extend insights from some synthetic languages to a non-inflectional language, Mandarin Chinese. Our empirical investigation also demonstrates this UG-inspired schema is effective: with its assistance, the inter-annotator agreement (IAA) for identifying event nominals in Mandarin grows from 88.02% to 94.99%, and automatic detection of event-reading nominalizations on the newly-established data achieves an accuracy of 94.76% and an F1 score of 91.3%, which are significantly surpass those achieved on the pre-existing resource by 9.8% and 5.2% respectively. Our systematic analysis also sheds light on nominal semantic role labelling (SRL). By providing a clear definition and classification on arguments of event nominal, the IAA of this task significantly increases from 90.46% to 98.04%.
期刊介绍:
Computational Linguistics is the longest-running publication devoted exclusively to the computational and mathematical properties of language and the design and analysis of natural language processing systems. This highly regarded quarterly offers university and industry linguists, computational linguists, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, and philosophers the latest information about the computational aspects of all the facets of research on language.