Large-Time Behavior of Two Families of Operators Related to the Fractional Laplacian on Certain Riemannian Manifolds

IF 1 3区 数学 Q1 MATHEMATICS
Effie Papageorgiou
{"title":"Large-Time Behavior of Two Families of Operators Related to the Fractional Laplacian on Certain Riemannian Manifolds","authors":"Effie Papageorgiou","doi":"10.1007/s11118-023-10109-1","DOIUrl":null,"url":null,"abstract":"<p>This note is concerned with two families of operators related to the fractional Laplacian, the first arising from the Caffarelli-Silvestre extension problem and the second from the fractional heat equation. They both include the Poisson semigroup. We show that on a complete, connected, and non-compact Riemannian manifold of non-negative Ricci curvature, in both cases, the solution with <span>\\(L^1\\)</span> initial data behaves asymptotically as the mass times the fundamental solution. Similar long-time convergence results remain valid on more general manifolds satisfying the Li-Yau two-sided estimate of the heat kernel. The situation changes drastically on hyperbolic space, and more generally on rank one non-compact symmetric spaces: we show that for the Poisson semigroup, the convergence to the Poisson kernel fails -but remains true under the additional assumption of radial initial data.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"35 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-023-10109-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This note is concerned with two families of operators related to the fractional Laplacian, the first arising from the Caffarelli-Silvestre extension problem and the second from the fractional heat equation. They both include the Poisson semigroup. We show that on a complete, connected, and non-compact Riemannian manifold of non-negative Ricci curvature, in both cases, the solution with \(L^1\) initial data behaves asymptotically as the mass times the fundamental solution. Similar long-time convergence results remain valid on more general manifolds satisfying the Li-Yau two-sided estimate of the heat kernel. The situation changes drastically on hyperbolic space, and more generally on rank one non-compact symmetric spaces: we show that for the Poisson semigroup, the convergence to the Poisson kernel fails -but remains true under the additional assumption of radial initial data.

某些黎曼曼体上与分数拉普拉斯相关的两个算子族的大时间行为
本说明涉及与分数拉普拉奇相关的两个算子族,第一个算子族产生于 Caffarelli-Silvestre 扩展问题,第二个算子族产生于分数热方程。它们都包含泊松半群。我们证明,在一个完整、连通、非紧凑的黎曼流形上,在这两种情况下,具有 \(L^1\) 初始数据的解近似表现为基本解的质量倍。类似的长时间收敛结果在满足热核的李-尤双面估计的更一般流形上仍然有效。在双曲空间以及更一般的秩一非紧凑对称空间上,情况发生了急剧变化:我们证明,对于泊松半群,向泊松核的收敛失败了--但在径向初始数据的额外假设下仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信