Estimation and prediction with data quality indexes in linear regressions

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
{"title":"Estimation and prediction with data quality indexes in linear regressions","authors":"","doi":"10.1007/s00180-023-01441-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Despite many statistical applications brush the question of data quality aside, it is a fundamental concern inherent to external data collection. In this paper, data quality relates to the confidence one can have about the covariate values in a regression framework. More precisely, we study how to integrate the information of data quality given by a <span> <span>\\((n \\times p)\\)</span> </span>-matrix, with <em>n</em> the number of individuals and <em>p</em> the number of explanatory variables. In this view, we suggest a latent variable model that drives the generation of the covariate values, and introduce a new algorithm that takes all these information into account for prediction. Our approach provides unbiased estimators of the regression coefficients, and allows to make predictions adapted to some given quality pattern. The usefulness of our procedure is illustrated through simulations and real-life applications. <?oxy_aq_start?>Kindly check and confirm whether the corresponding author is correctly identified.<?oxy_aq_end?><?oxy_aqreply_start?>Yes<?oxy_aqreply_end?></p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01441-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite many statistical applications brush the question of data quality aside, it is a fundamental concern inherent to external data collection. In this paper, data quality relates to the confidence one can have about the covariate values in a regression framework. More precisely, we study how to integrate the information of data quality given by a \((n \times p)\) -matrix, with n the number of individuals and p the number of explanatory variables. In this view, we suggest a latent variable model that drives the generation of the covariate values, and introduce a new algorithm that takes all these information into account for prediction. Our approach provides unbiased estimators of the regression coefficients, and allows to make predictions adapted to some given quality pattern. The usefulness of our procedure is illustrated through simulations and real-life applications. Kindly check and confirm whether the corresponding author is correctly identified.Yes

利用线性回归中的数据质量指标进行估计和预测
摘要 尽管许多统计应用将数据质量问题搁置一旁,但它却是外部数据收集所固有的一个基本问题。在本文中,数据质量关系到人们对回归框架中协变量值的置信度。更准确地说,我们研究的是如何整合由 (((n 次 p))-矩阵给出的数据质量信息。-矩阵给出的数据质量信息,其中 n 代表个体数量,p 代表解释变量数量。根据这一观点,我们提出了一个驱动协变量值生成的潜变量模型,并引入了一种新算法,将所有这些信息纳入预测考虑。我们的方法可提供无偏的回归系数估计值,并可根据给定的质量模式进行预测。我们通过模拟和实际应用说明了我们的程序的实用性。请检查并确认相应作者的身份是否正确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信