Defining metric-aware size-shape measures to validate and optimize curved high-order meshes

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Guillermo Aparicio-Estrems, Abel Gargallo-Peiró, Xevi Roca
{"title":"Defining metric-aware size-shape measures to validate and optimize curved high-order meshes","authors":"Guillermo Aparicio-Estrems,&nbsp;Abel Gargallo-Peiró,&nbsp;Xevi Roca","doi":"10.1016/j.cad.2023.103667","DOIUrl":null,"url":null,"abstract":"<div><p><span>We define a regularized size-shape distortion (quality) measure for curved high-order elements on a Riemannian space<span><span><span>. To this end, we measure the deviation of a given element, straight-sided or curved, from the stretching, alignment, and sizing determined by a target metric. The defined distortion (quality) is suitable to check the validity and the quality of straight-sided and curved elements on Riemannian spaces determined by constant and point-wise varying metrics. The examples illustrate that the distortion can be minimized to curve (deform) the elements of a given high-order (linear) mesh and try to match with curved (linear) elements the point-wise stretching, alignment, and sizing of a discrete target </span>metric tensor. In addition, the resulting meshes simultaneously match the curved features of the target metric and boundary. Finally, to verify if the minimization of the metric-aware size-shape distortion leads to meshes approximating the target metric, we compute the Riemannian measures for the </span>element edges<span>, faces, and cells. The results show that, when compared to anisotropic straight-sided meshes, the Riemannian measures of the curved high-order mesh entities are closer to unit. Furthermore, the optimized meshes illustrate the potential of curved </span></span></span><span><math><mi>r</mi></math></span>-adaptation to improve the accuracy of a function representation.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523001999","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We define a regularized size-shape distortion (quality) measure for curved high-order elements on a Riemannian space. To this end, we measure the deviation of a given element, straight-sided or curved, from the stretching, alignment, and sizing determined by a target metric. The defined distortion (quality) is suitable to check the validity and the quality of straight-sided and curved elements on Riemannian spaces determined by constant and point-wise varying metrics. The examples illustrate that the distortion can be minimized to curve (deform) the elements of a given high-order (linear) mesh and try to match with curved (linear) elements the point-wise stretching, alignment, and sizing of a discrete target metric tensor. In addition, the resulting meshes simultaneously match the curved features of the target metric and boundary. Finally, to verify if the minimization of the metric-aware size-shape distortion leads to meshes approximating the target metric, we compute the Riemannian measures for the element edges, faces, and cells. The results show that, when compared to anisotropic straight-sided meshes, the Riemannian measures of the curved high-order mesh entities are closer to unit. Furthermore, the optimized meshes illustrate the potential of curved r-adaptation to improve the accuracy of a function representation.

定义度量感知的尺寸-形状测量方法,以验证和优化曲面高阶网格
我们为黎曼空间上的弯曲高阶元素定义了正则化尺寸-形状失真(质量)度量。为此,我们测量给定元素(直边或曲线)与目标度量所确定的拉伸、对齐和大小的偏差。所定义的变形(质量)适用于检查由常数和随点变化的度量确定的黎曼空间上的直边和曲线元素的有效性和质量。这些示例说明,可以最小化变形,使给定高阶(线性)网格的元素曲线化(变形),并尝试用曲线(线性)元素匹配离散目标度量张量的点向拉伸、对齐和大小。此外,生成的网格还同时与目标度量和边界的曲线特征相匹配。最后,为了验证度量感知尺寸-形状变形最小化是否会导致网格逼近目标度量,我们计算了元素边、面和单元的黎曼度量。结果表明,与各向异性的直边网格相比,曲面高阶网格实体的黎曼度量更接近单位。此外,优化后的网格说明了曲面 r 适应在提高函数表示精度方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信