The deep neural network solver for B-spline approximation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zepeng Wen , Jiaqi Luo , Hongmei Kang
{"title":"The deep neural network solver for B-spline approximation","authors":"Zepeng Wen ,&nbsp;Jiaqi Luo ,&nbsp;Hongmei Kang","doi":"10.1016/j.cad.2023.103668","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper introduces a novel unsupervised deep learning<span> approach to address the knot placement problem in the field of B-spline approximation, called </span></span>deep neural network<span><span> solvers (DNN-Solvers). Given discrete points, the DNN acts as a solver for calculating knot positions in the case of a fixed knot number. The input can be any initial knots and the output provides the desirable knots. The loss function is based on the approximation error. The DNN-Solver converts the lower-dimensional knot placement problem, characterized as a nonconvex nonlinear optimization<span> problem, into a search for suitable network parameters within a high-dimensional space. Owing to the over-parameterization nature, DNN-Solvers are less likely to be trapped in local minima and robust against initial knots. Moreover, the unsupervised learning paradigm of DNN-Solvers liberates us from constructing high-quality </span></span>synthetic datasets with labels. Numerical experiments demonstrate that DNN-Solvers are excellent in both approximation results and efficiency under the premise of an appropriate number of knots.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523002002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel unsupervised deep learning approach to address the knot placement problem in the field of B-spline approximation, called deep neural network solvers (DNN-Solvers). Given discrete points, the DNN acts as a solver for calculating knot positions in the case of a fixed knot number. The input can be any initial knots and the output provides the desirable knots. The loss function is based on the approximation error. The DNN-Solver converts the lower-dimensional knot placement problem, characterized as a nonconvex nonlinear optimization problem, into a search for suitable network parameters within a high-dimensional space. Owing to the over-parameterization nature, DNN-Solvers are less likely to be trapped in local minima and robust against initial knots. Moreover, the unsupervised learning paradigm of DNN-Solvers liberates us from constructing high-quality synthetic datasets with labels. Numerical experiments demonstrate that DNN-Solvers are excellent in both approximation results and efficiency under the premise of an appropriate number of knots.

用于 B-样条逼近的深度神经网络求解器
本文介绍了一种新颖的无监督深度学习方法,用于解决 B-样条近似领域中的节点位置问题,即深度神经网络求解器(DNN-Solvers)。在给定离散点的情况下,DNN 充当解算器,计算固定节点数情况下的节点位置。输入可以是任何初始结点,输出则是理想的结点。损失函数基于近似误差。DNN 求解器将低维绳结位置问题(非凸非线性优化问题)转换为在高维空间内搜索合适的网络参数。由于过度参数化的特性,DNN-求解器不易陷入局部最小值,对初始结点也很稳健。此外,DNN-Solvers 的无监督学习模式使我们无需构建高质量的带标签合成数据集。数值实验证明,在节点数量适当的前提下,DNN求解器的近似结果和效率都非常出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信