Differences Between Robin and Neumann Eigenvalues on Metric Graphs

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Ram Band, Holger Schanz, Gilad Sofer
{"title":"Differences Between Robin and Neumann Eigenvalues on Metric Graphs","authors":"Ram Band,&nbsp;Holger Schanz,&nbsp;Gilad Sofer","doi":"10.1007/s00023-023-01401-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Laplacian on a metric graph, equipped with Robin (<span>\\(\\delta \\)</span>-type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021. arXiv:2008.07400). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 8","pages":"3859 - 3898"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01401-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Laplacian on a metric graph, equipped with Robin (\(\delta \)-type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021. arXiv:2008.07400). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes.

Abstract Image

Abstract Image

度量图上罗宾特征值与诺依曼特征值的区别
我们考虑的是度量图上的拉普拉斯函数,它在一些图顶点上具有 Robin(\(\delta \)-type)顶点条件,在所有其他顶点上具有 Neumann-Kirchhoff 条件。相应的特征值被称为罗宾特征值,而如果在所有顶点都施加 Neumann-Kirchhoff 条件,则被称为诺伊曼特征值。这些特征值对之间的差序列称为罗宾-诺伊曼间隙。我们证明了这个序列的极限均值是存在的,并且等于一个几何量,类似于 Rudnick 等人在平面域中得到的几何量(Commun Math Phys, 2021. arXiv:2008.07400)。此外,我们还证明了该序列是均匀有界的,并提供了明确的上界和下界。我们还研究了序列的可能累积点,并将其与相关的间隙概率分布联系起来。为了证明我们的主要结果,我们证明了局部韦尔定律,以及特征函数散射振幅第二矩的明确表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信