Transmission of light–matter entanglement over a metropolitan network

Jelena V. Rakonjac, Samuele Grandi, Sören Wengerowsky, Dario Lago-Rivera, Félicien Appas, and Hugues de Riedmatten
{"title":"Transmission of light–matter entanglement over a metropolitan network","authors":"Jelena V. Rakonjac, Samuele Grandi, Sören Wengerowsky, Dario Lago-Rivera, Félicien Appas, and Hugues de Riedmatten","doi":"10.1364/opticaq.501048","DOIUrl":null,"url":null,"abstract":"We report on the transmission of telecom photons entangled with a multimode solid-state quantum memory over a deployed optical fiber in a metropolitan area. Photon pairs were generated through spontaneous parametric downconversion, with one photon stored in a rare-earth-based quantum memory, and the other, at telecommunication wavelengths, traveling through increasing distances of optical fiber, first in the laboratory and then outside in a deployed fiber loop. We measured highly non-classical correlations between the stored and the telecom photons for storage times up to 25 µs and for a fiber separation up to 50 km. We also report light–matter entanglement with a two-qubit fidelity up to 88%, which remains constant within error bars for all fiber lengths, showing that the telecom qubit does not suffer decoherence during the transmission. Finally, we moved the detection stage of the telecom photons to a different location placed 16 km away, and confirmed the non-classical correlations between the two photons. Our system was adapted to provide the transmission of precise detection times and synchronization signals over long quantum communication channels, providing the first steps for a future quantum network involving quantum memories and non-classical states.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":"73 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.501048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report on the transmission of telecom photons entangled with a multimode solid-state quantum memory over a deployed optical fiber in a metropolitan area. Photon pairs were generated through spontaneous parametric downconversion, with one photon stored in a rare-earth-based quantum memory, and the other, at telecommunication wavelengths, traveling through increasing distances of optical fiber, first in the laboratory and then outside in a deployed fiber loop. We measured highly non-classical correlations between the stored and the telecom photons for storage times up to 25 µs and for a fiber separation up to 50 km. We also report light–matter entanglement with a two-qubit fidelity up to 88%, which remains constant within error bars for all fiber lengths, showing that the telecom qubit does not suffer decoherence during the transmission. Finally, we moved the detection stage of the telecom photons to a different location placed 16 km away, and confirmed the non-classical correlations between the two photons. Our system was adapted to provide the transmission of precise detection times and synchronization signals over long quantum communication channels, providing the first steps for a future quantum network involving quantum memories and non-classical states.
通过城域网传输光物质纠缠
我们报告了与多模固态量子存储器纠缠在一起的电信光子在大都会地区部署的光纤上的传输情况。光子对是通过自发参量降频转换产生的,其中一个光子存储在一个基于稀土的量子存储器中,另一个光子以电信波长通过光纤的传输距离不断增加,首先是在实验室中,然后是在室外部署的光纤环路中。我们测量了存储光子和电信光子之间的高度非经典相关性,存储时间长达 25 微秒,光纤间隔长达 50 千米。我们还报告了双量子比特保真度高达 88% 的光物质纠缠,在所有光纤长度范围内,该保真度在误差范围内保持不变,这表明电信量子比特在传输过程中不会发生退相干。最后,我们将电信光子的探测阶段移到了 16 千米之外的另一个地方,并证实了两个光子之间的非经典相关性。我们的系统适用于在长量子通信信道上传输精确的检测时间和同步信号,为未来涉及量子存储器和非经典状态的量子网络迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信