Ning Ji, Yuanheng Li, Jingjing Wei, Lei Huang, Wan-Hua Lin, Guanglin Li
{"title":"The Changes of Cardiovascular Neurotransmitter Levels under Low-Intensity Focused Ultrasound Stimulation of the Vagus Nerve.","authors":"Ning Ji, Yuanheng Li, Jingjing Wei, Lei Huang, Wan-Hua Lin, Guanglin Li","doi":"10.1109/EMBC40787.2023.10340334","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Our previous study has shown that stimulation of the vagus nerve with low-intensity focused ultrasound could modulate blood pressure (BP), but the underlying mechanisms remain unclear. This study investigated the changes of cardiovascular neurotransmitter levels to indirectly evaluate the responses of the autonomic nervous system and renin-angiotensin system under low-intensity focused ultrasound stimulation (FUS) of the vagus nerve.</p><p><strong>Methods: </strong>Cardiovascular neurotransmitter levels of epinephrine (EPI), norepinephrine (NE), and angiotensin II (ANGII) were measured and compared before and after the FUS in seven spontaneously hypertensive rats; and were also measured and compared between a target stimulation group (FUS, n = 6) and non-target stimulation group (Control, n = 5) after stimulation to exclude the influence of potential confounding factors.</p><p><strong>Results: </strong>The t-test results showed that the levels of EPI, NE, and ANGII were significantly decreased (P < 0.05) after stimulation compared to before stimulation. Additionally, the levels of NE and EPI were significantly lower (P < 0.05) in the FUS group than in the Control group after stimulation, indicating that the activities of the sympathetic nervous system and renin-angiotensin system of the vagus nerve might be inhibited by FUS of the vagus nerve.</p><p><strong>Conclusion: </strong>These findings reveal the mechanism of BP lowing in response to FUS of the vagus nerve.Clinical Relevance-This study revealed the mechanism of BP lowering in response to focused ultrasound stimulation of the vagus nerve through analyzing the changes of cardiovascular neurotransmitter levels.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Our previous study has shown that stimulation of the vagus nerve with low-intensity focused ultrasound could modulate blood pressure (BP), but the underlying mechanisms remain unclear. This study investigated the changes of cardiovascular neurotransmitter levels to indirectly evaluate the responses of the autonomic nervous system and renin-angiotensin system under low-intensity focused ultrasound stimulation (FUS) of the vagus nerve.
Methods: Cardiovascular neurotransmitter levels of epinephrine (EPI), norepinephrine (NE), and angiotensin II (ANGII) were measured and compared before and after the FUS in seven spontaneously hypertensive rats; and were also measured and compared between a target stimulation group (FUS, n = 6) and non-target stimulation group (Control, n = 5) after stimulation to exclude the influence of potential confounding factors.
Results: The t-test results showed that the levels of EPI, NE, and ANGII were significantly decreased (P < 0.05) after stimulation compared to before stimulation. Additionally, the levels of NE and EPI were significantly lower (P < 0.05) in the FUS group than in the Control group after stimulation, indicating that the activities of the sympathetic nervous system and renin-angiotensin system of the vagus nerve might be inhibited by FUS of the vagus nerve.
Conclusion: These findings reveal the mechanism of BP lowing in response to FUS of the vagus nerve.Clinical Relevance-This study revealed the mechanism of BP lowering in response to focused ultrasound stimulation of the vagus nerve through analyzing the changes of cardiovascular neurotransmitter levels.