Digital Hardware Implementation of ReSuMe Learning Algorithm for Spiking Neural Networks.

Dario Fernandez Khatiboun, Yasser Rezaeiyan, Margherita Ronchini, Maryam Sadeghi, Milad Zamani, Farshad Moradi
{"title":"Digital Hardware Implementation of ReSuMe Learning Algorithm for Spiking Neural Networks.","authors":"Dario Fernandez Khatiboun, Yasser Rezaeiyan, Margherita Ronchini, Maryam Sadeghi, Milad Zamani, Farshad Moradi","doi":"10.1109/EMBC40787.2023.10340282","DOIUrl":null,"url":null,"abstract":"<p><p>Within this paper, we demonstrate the feasibility of the FPGA implementation as well as the 180nm CMOS circuit design of a particular biologically plausible supervised learning algorithm (ReSuMe). Based on the Spike-Timing-Dependent Plasticity (STDP) learning phenomenon, this design proposes a fully configurable implementation of STDP learning window function to adjust the learning process for different applications, optimizing results for each use case. The CMOS implementation in 180nm technology node supplied with 1.8V shows a core area of 0.78mm<sup>2</sup> and verifies the suitability of an on-chip ReSuMe learning algorithm implementation and its capability of integration with a multitude of external and already designed structures of Spiking Neural Networks (SNNs).</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Within this paper, we demonstrate the feasibility of the FPGA implementation as well as the 180nm CMOS circuit design of a particular biologically plausible supervised learning algorithm (ReSuMe). Based on the Spike-Timing-Dependent Plasticity (STDP) learning phenomenon, this design proposes a fully configurable implementation of STDP learning window function to adjust the learning process for different applications, optimizing results for each use case. The CMOS implementation in 180nm technology node supplied with 1.8V shows a core area of 0.78mm2 and verifies the suitability of an on-chip ReSuMe learning algorithm implementation and its capability of integration with a multitude of external and already designed structures of Spiking Neural Networks (SNNs).

尖峰神经网络 ReSuMe 学习算法的数字硬件实现。
在本文中,我们展示了 FPGA 实现的可行性,以及 180nm CMOS 电路设计的一种特殊的生物学上可信的监督学习算法 (ReSuMe)。该设计以尖峰计时可塑性(STDP)学习现象为基础,提出了一种完全可配置的 STDP 学习窗口函数实现方法,以针对不同应用调整学习过程,优化每种使用情况的结果。在 1.8V 的 180 纳米技术节点上实现的 CMOS 核心面积为 0.78 平方毫米,验证了片上 ReSuMe 学习算法实现的适用性及其与多种外部和已设计的尖峰神经网络(SNN)结构集成的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信